咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是21-30 订阅
排序:
Mechanisms of Social learning in Evolved Artificial Life
Mechanisms of Social Learning in Evolved Artificial Life
收藏 引用
2020 Conference on Artificial Life, ALIFE 2020
作者: Bartoli, Alberto Catto, Marco De Lorenzo, Andrea Medvet, Eric Talamini, Jacopo Machine Learning Lab. Department of Engineering and Architecture University of Trieste Italy Evolutionary Robotics and Artificial Life Lab. Department of Engineering and Architecture University of Trieste Italy
Adaptation of agents in artificial life scenarios is especially effective when agents may evolve, i.e., inherit traits from their parents, and learn by interacting with the environment. The learning process may be boo... 详细信息
来源: 评论
Communication in Decision Making: Competition favors Inequality
Communication in Decision Making: Competition favors Inequal...
收藏 引用
2020 Conference on Artificial Life, ALIFE 2020
作者: Talamini, Jacopo Medvet, Eric Bartoli, Alberto De Lorenzo, Andrea Machine Learning Lab. Department of Engineering and Architecture University of Trieste Italy Evolutionary Robotics and Artificial Life Lab. Department of Engineering and Architecture University of Trieste Italy
We consider a multi-agent system in which the individual goal is to collect resources, but where the amount of collected resources depends also on others decision. Agents can communicate and can take advantage of bein...
来源: 评论
POMDP manipulation via trajectory optimization
POMDP manipulation via trajectory optimization
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Ngo Anh Vien M. Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany
Efficient object manipulation based only on force feedback typically requires a plan of actively contact-seeking actions to reduce uncertainty over the true environmental model. In principle, that problem could be for... 详细信息
来源: 评论
Classification of benign and malignant breast tumors in ultrasound images based on multiple sonographic and textural features
Classification of benign and malignant breast tumors in ultr...
收藏 引用
3rd International Conference on Intelligent Human-machine Systems and Cybernetics, IHMSC 2011
作者: Liao, Renjie Wan, Tao Qin, Zengchang Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University Beijing 100191 China Robotics Institute Carnegie Mellon University United States
We establish a new set of features for differentiating benign from malignant breast lesions using ultrasound (US) images. Two types of features (sonographic and textural features) are considered. Among them, three son... 详细信息
来源: 评论
Kinematic morphing networks for manipulation skill transfer
arXiv
收藏 引用
arXiv 2018年
作者: Englert, Peter Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany
The transfer of a robot skill between different geometric environments is non-trivial since a wide variety of environments exists, sensor observations as well as robot motions are high-dimensional, and the environment... 详细信息
来源: 评论
Prediction of Human Full-Body Movements with Motion Optimization and Recurrent Neural Networks
Prediction of Human Full-Body Movements with Motion Optimiza...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Philipp Kratzer Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany
Human movement prediction is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose a prediction framework th... 详细信息
来源: 评论
Touch based POMDP manipulation via sequential submodular optimization
Touch based POMDP manipulation via sequential submodular opt...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Ngo Anh Vien Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany
Exploiting the submodularity of entropy-related objectives has recently led to a series of successes in machine learning and sequential decision making. Its generalized framework, adaptive submodularity, has later bee... 详细信息
来源: 评论
Identification of unmodeled objects from symbolic descriptions
arXiv
收藏 引用
arXiv 2017年
作者: Baisero, Andrea Otte, Stefan Englert, Peter Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
Successful human-robot cooperation hinges on each agent's ability to process and exchange information about the shared environment and the task at hand. Human communication is primarily based on symbolic abstracti... 详细信息
来源: 评论
Relational Activity Processes for Modeling Concurrent Cooperation
Relational Activity Processes for Modeling Concurrent Cooper...
收藏 引用
IEEE International Conference on robotics and Automation
作者: Marc Toussaint Thibaut Munzer Yoan Mollard Li Yang Wu Ngo Anh Vien Manuel Lopes Machine Learning and Robotics Lab University of Stuttgart Germany
In human-robot collaboration, multi-agent domains, or single-robot manipulation with multiple end-effectors, the activities of the involved parties are naturally concurrent. Such domains are also naturally relational ... 详细信息
来源: 评论
Regression with comparisons: escaping the curse of dimensionality with ordinal information
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 6480-6533页
作者: Yichong Xu Sivaraman Balakrishnan Aarti Singh Artur Dubrawski Machine Learning Department Department of Statistics and Data Science Machine Learning Department Auton Lab The Robotics Institute Carnegie Mellon University Pittsburgh PA
In supervised learning, we typically leverage a fully labeled dataset to design methods for function estimation or prediction. In many practical situations, we are able to obtain alternative feedback, possibly at a lo... 详细信息
来源: 评论