咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是41-50 订阅
排序:
Robot programming from demonstration, feedback and transfer
Robot programming from demonstration, feedback and transfer
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Y. Mollard T. Munzer A. Baisero M. Toussaint M. Lopes Flowers Team Inria France Machine Learning and Robotics Lab University of Stuttgart Germany
This paper presents a novel approach for robot instruction for assembly tasks. We consider that robot programming can be made more efficient, precise and intuitive if we leverage the advantages of complementary approa... 详细信息
来源: 评论
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning
作者: Hans, Alexander Duell, Siegmund Udluft, Steffen Neuroinformatics and Cognitive Robotics Lab Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Corporate Technology Munich Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Entropy-based strategies for physical exploration of the environment's degrees of freedom
Entropy-based strategies for physical exploration of the env...
收藏 引用
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Stefan Otte Johannes Kulick Marc Toussaint Oliver Brock Machine Learning and Robotics Lab Universität Stuttgart Germany Robotics and Biology Laboratory Technische Universität Berlin Germany
Physical exploration refers to the challenge of autonomously discovering and learning how to manipulate the environment's degrees of freedom (DOF)-by identifying promising points of interaction and pushing or pull... 详细信息
来源: 评论
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
arXiv
收藏 引用
arXiv 2023年
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren The Humanoid Robots Lab University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence and the Center for Robotics Bonn Germany The Learning Systems and Robotics lab The Technical University of Munich Germany
In this paper, we address the problem of behavior-based cooperative navigation of mobile robots using safe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
Active Inverse Model learning with Error and Reachable Set Estimates
Active Inverse Model Learning with Error and Reachable Set E...
收藏 引用
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Danny Driess Syn Schmitt Marc Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany Biomechanics and Biorobotics Group University of Stuttgart Germany
In this work, we propose a framework to learn an inverse model of redundant systems. We address three problems. By formalizing what it actually means to learn an inverse model, we derive a method where the inverse mod...
来源: 评论
Camera-Based Belief Space Planning in Discrete Partially-Observable Domains
Camera-Based Belief Space Planning in Discrete Partially-Obs...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Janis Eric Freund Camille Phiquepal Andreas Orthey Marc Toussaint Technical University of Berlin Germany Machine Learning & Robotics Lab University of Stuttgart Germany Realtime Robotics Inc Boston MA USA
Robots often have to operate in discrete partially observable worlds, where the state of the world is only observable at runtime. To react to different world states, robots need contingencies. To find contingencies, p... 详细信息
来源: 评论
Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
arXiv
收藏 引用
arXiv 2020年
作者: Ha, Jung-Su Driess, Danny Toussaint, Marc Machine Learning & Robotics Lab University Stuttgart Max Planck Institute for Intelligent Systems Stuttgart Germany
— Logic-Geometric Programming (LGP) is a powerful motion and manipulation planning framework, which represents hierarchical structure using logic rules that describe discrete aspects of problems, e.g., touch, grasp, ... 详细信息
来源: 评论
A Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
A Probabilistic Framework for Constrained Manipulations and ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Jung-Su Ha Danny Driess Marc Toussaint Machine Learning & Robotics Lab University Stuttgart and with the Max Planck Institute for Intelligent Systems Stuttgart Germany
Logic-Geometric Programming (LGP) is a powerful motion and manipulation planning framework, which represents hierarchical structure using logic rules that describe discrete aspects of problems, e.g., touch, grasp, hit... 详细信息
来源: 评论
Guided Decoding for Robot On-line Motion Generation and Adaption  23
Guided Decoding for Robot On-line Motion Generation and Adap...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024
作者: Chen, Nutan Cseke, Botond Aljalbout, Elie Paraschos, Alexandros Alles, Marvin Van Der Smagt, Patrick Machine Learning Research Lab Volkswagen Group Germany Robotics and Perception Group Department of Informatics Switzerland Uzh Eth Zurich Department of Neuroinformatics Switzerland Eötvös Loránd University Faculty of Informatics Budapest Hungary
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points. learning from Demonstration facilitates rapid adapt... 详细信息
来源: 评论
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with Deep Multi-View Stereo
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with ...
收藏 引用
International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Yingye Xin Xingxing Zuo Dongyue Lu Stefan Leutenegger Smart Robotics Lab Technical University of Munich Germany Munich Center for Machine Learning (MCML) Germany
We present a real-time visual-inertial dense mapping method capable of performing incremental 3D mesh reconstruction with high quality using only sequential monocular images and inertial measurement unit (IMU) reading...
来源: 评论