咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是51-60 订阅
排序:
Opening a lockbox through physical exploration
Opening a lockbox through physical exploration
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Manuel Baum Matthew Bernstein Roberto Martin-Martin Sebastian Höfer Johannes Kulick Marc Toussaint Alex Kacelnik Oliver Brock Robotics and Biology Lab (RBO) Technische Universität Berlin Machine Learning and Robotics Lab (MLR) Universität Stuttgart Department of Zoology Oxford University
How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanica... 详细信息
来源: 评论
Is Data All That Matters? the Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain Systems
Is Data All That Matters? the Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Ralf Römer Lukas Brunke Siqi Zhou Angela P. Schoellig Learning Systems and Robotics Lab (***) School of Computation Information and Technology and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Technical University of Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
Co-Optimizing Robot, Environment, and Tool Design via Joint Manipulation Planning
Co-Optimizing Robot, Environment, and Tool Design via Joint ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Jung-Su Ha Ozgur S. Oguz Learning & Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany Machine Learning & Robotics Lab University of Stuttgart Germany
Existing work on sequential manipulation planning and trajectory optimization typically assumes the robot, environment and tools to be given. However, in particular in industrial applications, it is highly interesting... 详细信息
来源: 评论
learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation
Learning Efficient Constraint Graph Sampling for Robotic Seq...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joaquim Ortiz-Haro Valentin N. Hartmann Ozgur S. Oguz Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Constrained Bayesian optimization of combined interaction force/task space controllers for manipulations
Constrained Bayesian optimization of combined interaction fo...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Danny Drieß Peter Englert Marc Toussaint Universitat Stuttgart Stuttgart Baden-Württemberg DE Machine Learning and Robotics Lab University of Stuttgart Germany
In this paper, we address the problem of how a robot can optimize parameters of combined interaction force/task space controllers under a success constraint in an active way. To enable the robot to explore its environ... 详细信息
来源: 评论
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Tuscher Julian Hörz Danny Driess Marc Toussaint sereact Machine Learning and Robotics Lab University of Stuttgart Max-Planck Institute for Intelligent Systems Stuttgart Learning and Intelligent Systems TU Berlin
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Deep Visual Heuristics: learning Feasibility of Mixed-Integer Programs for Manipulation Planning
Deep Visual Heuristics: Learning Feasibility of Mixed-Intege...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Danny Driess Ozgur Oguz Jung-Su Ha Marc Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Stuttgart Germany
In this paper, we propose a deep neural network that predicts the feasibility of a mixed-integer program from visual input for robot manipulation planning. Integrating learning into task and motion planning is challen... 详细信息
来源: 评论
Asymptotically Optimal Belief Space Planning in Discrete Partially-Observable Domains
arXiv
收藏 引用
arXiv 2023年
作者: Freund, Janis Eric Phiquepal, Camille Orthey, Andreas Toussaint, Marc Technical University of Berlin Germany Realtime Robotics Inc. BostonMA United States Machine Learning & Robotics Lab University of Stuttgart Germany
Robots often have to operate in discrete partially observable worlds, where the states of world are only observable at runtime. To react to different world states, robots need contingencies. However, computing conting... 详细信息
来源: 评论
Planning Coordinated Human-Robot Motions with Neural Network Full-Body Prediction Models
arXiv
收藏 引用
arXiv 2022年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim The Machine Learning and Robotics Lab University of Stuttgart Germany The Humans to Robots Motions Research Group University of Stuttgart Germany The Learning and Intelligent Systems Lab TU Berlin Germany
Numerical optimization has become a popular approach to plan smooth motion trajectories for robots. However, when sharing space with humans, balancing properly safety, comfort and efficiency still remains challenging.... 详细信息
来源: 评论
Reinforcement learning with Non-uniform State Representations for Adaptive Search
Reinforcement Learning with Non-uniform State Representation...
收藏 引用
IEEE International Workshop on Safety, Security, and Rescue robotics (SSRR)
作者: Sandeep Manjanna Herke van Hoof Gregory Dudek Mobile Robotics Lab (MRL) McGill University Montreal Canada Amsterdam Machine Learning Lab (AMLAB) University of Amsterdam Amsterdam Netherlands
The following topics are dealt with: mobile robots; path planning; robot vision; autonomous aerial vehicles; remotely operated vehicles; rescue robots; cameras; multi-robot systems; emergency services; learning (artif... 详细信息
来源: 评论