咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是71-80 订阅
排序:
learning arbitration for shared autonomy by hindsight data aggregation
arXiv
收藏 引用
arXiv 2019年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen Germany
In this paper we present a framework for the teleoperation of pick-and-place tasks. We define a shared control policy that allows to blend between direct user control and autonomous control based on user intent infere... 详细信息
来源: 评论
Prediction of human full-body movements with motion optimization and recurrent neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Kratzer, Philipp Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
Human movement prediction is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose a prediction framework th... 详细信息
来源: 评论
Deep visual reasoning: learning to predict action sequences for task and motion planning from an initial scene image
arXiv
收藏 引用
arXiv 2020年
作者: Driess, Danny Ha, Jung-Su Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany
In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining... 详细信息
来源: 评论
Plan-based relaxed reward shaping for goal-directed tasks
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
Practical Considerations for Discrete-Time Implementations o...
收藏 引用
American Control Conference (ACC)
作者: Lukas Brunke Siqi Zhou Mingxuan Che Angela P. Schoellig Learning Systems and Robotics Lab Technical University of Munich Germany University of Toronto Canada Munich Institute of Robotics and Machine Intelligence (MIRMI) the University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
The Markov decision process extraction network
The Markov decision process extraction network
收藏 引用
18th European Symposium on Artificial Neural Networks, Computational Intelligence and machine learning, ESANN 2010
作者: Duell, Siegmund Hans, Alexander Udluft, Steffen Siemens AG Corporate Research and Technologies Learning Systems Otto-Hahn-Ring 6 D-81739 Munich Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 D-10587 Berlin Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 D-98684 Ilmenau Germany
This paper presents the Markov decision process extraction network, which is a data-efficient, automatic state estimation approach for discrete-time reinforcement learning (RL) based on recurrent neural networks. The ... 详细信息
来源: 评论
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
Anticipating Human Intention for Full-Body Motion Prediction...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Philipp Kratzer Niteesh Balachandra Midlagajni Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen...
来源: 评论
Natural Gradient Shared Control
Natural Gradient Shared Control
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Yoojin Oh Shao-Wen Wu Marc Toussaint Jim Mainprice Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho...
来源: 评论
Anticipating Human Intention for Full-Body Motion Prediction in Object Grasping and Placing Tasks
arXiv
收藏 引用
arXiv 2020年
作者: Kratzer, Philipp Midlagajni, Niteesh Balachandra Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Humans to Robots Motions Research Group HRM University of Stuttgart Germany Learning and Intelligent Systems Lab Technical University of Berlin Germany
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environmen... 详细信息
来源: 评论
Natural gradient shared control
arXiv
收藏 引用
arXiv 2020年
作者: Oh, Yoojin Wu, Shao-Wen Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen Germany
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control autho... 详细信息
来源: 评论