咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是81-90 订阅
排序:
Temporal segmentation of pair-wise interaction phases in sequential manipulation demonstrations
Temporal segmentation of pair-wise interaction phases in seq...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: A. Baisero Y. Mollard M. Lopes M. Toussaint I. Lutkebohle Machine Learning and Robotics Lab University of Stuttgart Germany Flowers Team French Institute for Research in Computer Science and Automation (Inria) France
We consider the problem of learning from complex sequential demonstrations. We propose to analyze demonstrations in terms of the concurrent interaction phases which arise between pairs of involved bodies (hand-object ... 详细信息
来源: 评论
Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints
arXiv
收藏 引用
arXiv 2017年
作者: Yildirim, Ilker Gerstenberg, Tobias Saeed, Basil Toussaint, Marc Tenenbaum, Joshua B. Brain and Cognitive Sciences Massachusetts Institute of Technology CambridgeMA United States Machine Learning and Robotics Lab University of Stuttgart Germany
In this paper, we present a new task that investigates how people interact with and make judgments about towers of blocks. In Experiment 1, participants in the lab solved a series of problems in which they had to re-c... 详细信息
来源: 评论
Multi-bound tree search for logic-geometric programming in cooperative manipulation domains
Multi-bound tree search for logic-geometric programming in c...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Manuel Lopes Machine Learning and Robotics Lab University of Stuttgart Germany INESC-ID Instituto Superior Técnico Universide de Lisboa Portugal
Joint symbolic and geometric planning is one of the core challenges in robotics. We address the problem of multi-agent cooperative manipulation, where we aim for jointly optimal paths for all agents and over the full ... 详细信息
来源: 评论
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
arXiv
收藏 引用
arXiv 2020年
作者: Mainprice, Jim Ratliff, Nathan Toussaint, Marc Schaal, Stefan Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPITübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp... 详细信息
来源: 评论
Describing Physics For Physical Reasoning: Force-based Sequential Manipulation Planning
arXiv
收藏 引用
arXiv 2020年
作者: Toussaint, Marc Ha, Jung-Su Driess, Danny Machine Learning & Robotics Lab University Stuttgart Stuttgart70569 Germany Max Planck Institute for Intelligent Systems Stuttgart70569 Germany
Physical reasoning is a core aspect of intelligence in animals and humans. A central question is what model should be used as a basis for reasoning. Existing work considered models ranging from intuitive physics and p...
来源: 评论
Deep 6-DoF tracking of unknown objects for reactive grasping
arXiv
收藏 引用
arXiv 2021年
作者: Tuscher, Marc Hörz, Julian Driess, Danny Toussaint, Marc Sereact Germany Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems TU Berlin Germany
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
Control-Barrier-Aided Teleoperation with Visual-Inertial SLA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Siqi Zhou Sotiris Papatheodorou Stefan Leutenegger Angela P. Schoellig Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence (MIRMI) Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Department of Computing Smart Robotics Lab Imperial College London
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
An Interior Point Method Solving Motion Planning Problems with Narrow Passages
An Interior Point Method Solving Motion Planning Problems wi...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Jim Mainprice Nathan Ratliff Marc Toussaint Stefan Schaal Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems IS-MPI Tübingen & Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany
Algorithmic solutions for the motion planning problem have been investigated for five decades. Since the development of A* in 1969 many approaches have been investigated, traditionally classified as either grid decomp...
来源: 评论
learning to arbitrate human and robot control using disagreement between sub-policies
arXiv
收藏 引用
arXiv 2021年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen/Stuttgart Germany
In the context of teleoperation, arbitration refers to deciding how to blend between human and autonomous robot commands. We present a reinforcement learning solution that learns an optimal arbitration strategy that a... 详细信息
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论