咨询与建议

限定检索结果

文献类型

  • 908 篇 会议
  • 635 篇 期刊文献

馆藏范围

  • 1,543 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 983 篇 工学
    • 529 篇 计算机科学与技术...
    • 468 篇 软件工程
    • 300 篇 控制科学与工程
    • 160 篇 电气工程
    • 147 篇 信息与通信工程
    • 135 篇 机械工程
    • 118 篇 生物工程
    • 106 篇 生物医学工程(可授...
    • 105 篇 电子科学与技术(可...
    • 95 篇 光学工程
    • 53 篇 化学工程与技术
    • 51 篇 仪器科学与技术
    • 45 篇 交通运输工程
    • 37 篇 动力工程及工程热...
    • 30 篇 航空宇航科学与技...
    • 28 篇 力学(可授工学、理...
    • 22 篇 土木工程
  • 606 篇 理学
    • 364 篇 数学
    • 138 篇 物理学
    • 125 篇 生物学
    • 116 篇 系统科学
    • 97 篇 统计学(可授理学、...
    • 50 篇 化学
  • 224 篇 管理学
    • 165 篇 管理科学与工程(可...
    • 65 篇 图书情报与档案管...
    • 53 篇 工商管理
  • 74 篇 医学
    • 59 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 21 篇 法学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 11 篇 农学
  • 10 篇 教育学
  • 7 篇 军事学
  • 6 篇 文学
  • 1 篇 艺术学

主题

  • 48 篇 feature extracti...
  • 38 篇 training
  • 26 篇 object detection
  • 25 篇 image segmentati...
  • 25 篇 multi-agent syst...
  • 21 篇 computational mo...
  • 20 篇 simulation
  • 20 篇 accuracy
  • 20 篇 multi agent syst...
  • 19 篇 support vector m...
  • 19 篇 deep learning
  • 19 篇 stability analys...
  • 19 篇 optimization
  • 19 篇 machine learning
  • 17 篇 electroencephalo...
  • 17 篇 neural networks
  • 17 篇 semantics
  • 16 篇 target tracking
  • 16 篇 real-time system...
  • 16 篇 robustness

机构

  • 115 篇 shanghai enginee...
  • 112 篇 department of au...
  • 112 篇 key laboratory o...
  • 77 篇 school of artifi...
  • 57 篇 school of automa...
  • 48 篇 key laboratory o...
  • 39 篇 key laboratory o...
  • 38 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 33 篇 shenzhen huazhon...
  • 31 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 21 篇 department of au...
  • 20 篇 institute of ima...
  • 20 篇 department of co...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 17 篇 ministry of educ...
  • 16 篇 shanghai jiao to...

作者

  • 59 篇 wu dongrui
  • 50 篇 zeng zhigang
  • 43 篇 zhigang zeng
  • 36 篇 ding mingyue
  • 33 篇 jiao licheng
  • 32 篇 mingyue ding
  • 31 篇 licheng jiao
  • 31 篇 cao zhiguo
  • 30 篇 chen cailian
  • 30 篇 wang hesheng
  • 29 篇 guan xinping
  • 25 篇 housheng su
  • 25 篇 xi li
  • 25 篇 su housheng
  • 23 篇 sang nong
  • 22 篇 jian huang
  • 21 篇 wang guangming
  • 21 篇 yongji wang
  • 19 篇 li xi
  • 19 篇 jie yang

语言

  • 1,468 篇 英文
  • 38 篇 其他
  • 38 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=The Ministry of Education Key Laboratory of Image Processing and Intelligent Control"
1543 条 记 录,以下是1-10 订阅
排序:
A Novel Optimal Distributed Nonlinear Filter for Simultaneous State and Unknown Input Estimation in Multi-Sensor Networks
收藏 引用
IEEE Signal processing Letters 2025年 32卷 1745-1749页
作者: Ding, Bo Wei, Yuanchu Zhang, Enze Fang, Huajing Yangzhou University College of Information Engineering Yangzhou225127 China Huazhong University of Science and Technology School of Automation Key Laboratory of Image Processing and Intelligent Control Ministry of Education Wuhan430074 China
This letter investigates the problem of simultaneous state and unknown input estimation in a nonlinear system within multi-sensor networks. To avoid the linearization errors caused by existing methods, such as statist... 详细信息
来源: 评论
Complementary Learning Subnetworks towards Parameter-Efficient Class-Incremental Learning
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年 第6期37卷 3240-3252页
作者: Li, Depeng Zeng, Zhigang Dai, Wei Suganthan, Ponnuthurai Nagaratnam Huazhong University of Science and Technology School of Artificial Intelligence and Automation China Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Wuhan430074 China China University of Mining and Technology School of Information and Control Engineering Xuzhou221116 China Qatar University KINDI Center for Computing Research College of Engineering Doha Qatar
In the scenario of class-incremental learning (CIL), deep neural networks have to adapt their model parameters to non-stationary data distributions, e.g., the emergence of new classes over time. To mitigate the catast... 详细信息
来源: 评论
Curve-Suppression-Based Event-Triggered Mechanisms for Quasi-Synchronization of Fuzzy Delayed Neural Networks on Time Scales
收藏 引用
IEEE Transactions on Systems, Man, and Cybernetics: Systems 2025年 第5期55卷 3174-3187页
作者: Wan, Peng Zhou, Yufeng Zeng, Zhigang Lai, Jingang Wuhan University of Science and Technology School of Artificial Intelligence and Automation Engineering Research Center of Metallurgical Automation and Measurement Technology Wuhan430081 China Huazhong University of Science and Technology School of Artificial Intelligence and Automation Key Laboratory of Image Processing and Intelligent control of Education Ministry of China Wuhan430074 China
The vast majority of published event-triggered mechanisms (ETMs) are constructed based on measurement errors, which introduces a problem naturally that they are updated when the measurement errors exceed the threshold... 详细信息
来源: 评论
Enhancing Network Abnormal Detection With NMF-SECNN: Leveraging Deep Feature Learning for High-Precision Traffic Analysis
收藏 引用
IEEE Transactions on Network Science and Engineering 2025年 第3期12卷 2069-2080页
作者: Yuan, Yazhou Yu, Ning Zheng, Zhuolin Yang, Yong Ma, Kai Liu, Zhixin Chen, Cailian Zhang, Jianmin Yanshan University Institute of Electrical Engineering Qinhuangdao066004 China Yanshan University Key Laboratory of Intelligent Control and Neural Information Processing of the Ministry of Education of China Qinhuangdao066004 China State Grid Handan Electric Power Supply Company Hebei 056000 China Shanghai Jiao Tong University Department of Automation Shanghai200240 China Ministry of Education of China Key Laboratory of System Control and Information Processing Shanghai200240 China Baosteel Research Institute Automation Department Shanghai200240 China
Detection of abnormalities in industrial network traffic plays a crucial role in maintaining network system security. However, current abnormal detection models suffer from low precision, and extracting deep-level fea... 详细信息
来源: 评论
Extended State Observer-based Hybrid Dynamic Event-Triggered Consensus control with External Disturbances  24
Extended State Observer-based Hybrid Dynamic Event-Triggered...
收藏 引用
2nd International Conference on Frontiers of intelligent Manufacturing and Automation, CFIMA 2024
作者: Pei, Wenliang Hua, Changchun Cui, Hailong Zhao, Guanglei Ma, Zhuang The Institute of Electrical Engineering The Key Lab of Intelligent Rehabilitation and Neuroregulation in Hebei Province Key Laboratory of Intelligent Control and Neural Information Processing Ministry of Education Yanshan University Hebei China Tangshan University Hebei China
This paper solves the event-triggered robust consensus problem of disturbed multi-agent systems (MASs) in fully distributed fashion. First, a distributed extended state observer (DESO) is developed for appropriately e... 详细信息
来源: 评论
Adaptive Neural Finite-Time Deployment of Heterogeneous Multi-agent Systems via a Cross-Species Bionic PDE-ODE Approach
Artificial Intelligence Science and Engineering
收藏 引用
Artificial Intelligence Science and Engineering 2025年 第1期1卷 52-63页
作者: Jingtao MAN Zhigang ZENG Jun LI School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Wuhan China
For large-scale heterogeneous multi-agent systems (MASs) with characteristics of dense-sparse mixed distribution, this paper investigates the practical finite-time deployment problem by establishing a novel cross-spec... 详细信息
来源: 评论
Finite-Time Consensus of Second-Order Multiagent Systems with Input Saturation via Hybrid Sliding-Mode control
收藏 引用
IEEE Transactions on Automation Science and Engineering 2025年 22卷 14623-14632页
作者: Jiang, Xiaowei Jiao, Ranran Li, Bo Zhang, Xianhe Yan, Huaicheng China University of Geosciences School of Automation Hubei Key Laboratory of Advanced Control and Intelligent Automation of Complex Systems Engineering Research Center of Intelligent Geodetection Technology Ministry of Education Wuhan430074 China Ministry of Education Key Laboratory of System Control and Information Processing Shanghai200240 China Anhui University of Finance and Economics School of Finance Bengbu233030 China Hubei Normal University School of Electrical Engineering and Automation Huangshi435002 China East China University of Science and Technology Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education Shanghai200237 China
This paper addresses the finite-time consensus (FTC) issue for second-order multi-agent systems (MASs) with nonlinear disturbances. To tackle the challenges posed by increasingly complex communication environments, an... 详细信息
来源: 评论
Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot
收藏 引用
Journal of Shanghai Jiaotong university(Science) 2025年 第1期30卷 27-33页
作者: ZHAO Yanfei XIAO Peng WANG Jingchuan GUO Rui Department of Automation Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China State Key Laboratory of System Control and Information Processing Ministry of Education of ChinaShanghai200240China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240China State Grid Intelligence Technology Co. Ltd.Jinan250013China
Mobile robots represented by smart wheelchairs can assist elderly people with mobility *** paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist... 详细信息
来源: 评论
Tissue P Systems with Look-Ahead Mode
收藏 引用
Chinese Journal of Electronics 2025年 第1期23卷 81-86页
作者: Yun Jiang Tao Song Zheng Zhang School of Computer Science and Information Engineering Chongqing Technology and Business University Chongqing China Department of Control Science and Engineering Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Wuhan China
Tissue P systems are a class of distributed and parallel computing models inspired from inter-cellular communication and cooperation between cells. In this work, a variant of tissue P system, named tissue P system wit... 详细信息
来源: 评论
Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control Huazhong University of Science and Technology Wuhan430074 China Hubei Key Laboratory of Brain-inspired Intelligent Systems Huazhong University of Science and Technology Wuhan430074 China
Due to the non-stationarity and large individual differences of EEG signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, ... 详细信息
来源: 评论