Inspired by flagellar propulsion of bacterial such as E. coli, artificial bacterial flagella (ABFs) are magnetic swimming microrobots with helical shapes. ABFs can perform precise three-dimensional (3D) navigation in ...
详细信息
ISBN:
(纸本)9781467359825
Inspired by flagellar propulsion of bacterial such as E. coli, artificial bacterial flagella (ABFs) are magnetic swimming microrobots with helical shapes. ABFs can perform precise three-dimensional (3D) navigation in liquids under low-strength rotating magnetic fields making them attractive tools for drug delivery applications. Further functionalization of these swimming microrobots is necessary to optimize their performance of biomedical tasks. We report here for the first time the successful functionalization of titanium-coated ABFs with temperature-sensitive dipalmitoylphosphatidylcholine (DPPC) liposomes. Adsorption of intact liposomes on titanium was assessed using quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption of fluorescently labeled liposomes on the surface of ABFs was confirmed with confocal laser scanning microscopy (CLSM) images. Functionalized ABFs (f-ABFs) can be loaded with both hydrophilic and hydrophobic drugs, and controlled drug release triggered by temperature. ABFs have a great potential to be used in targeted and controlled drug delivery and for in vivo sensing.
This paper introduces the concept of caging micromanipulation for use in automated open loop microassembly tasks. Utilizing a caging transport motion primitive along with rotational and translation primitives, we demo...
详细信息
This paper introduces the concept of caging micromanipulation for use in automated open loop microassembly tasks. Utilizing a caging transport motion primitive along with rotational and translation primitives, we demonstrate full control of the state of the part. Additionally, a framework for planar microassembly task planning is provided based on the A* algorithm. It is used to determine the optimal assembly sequences and part starting locations in the workspace. We also describe a test-bed suitable for planar micro, meso-scale, and nano-scale manipulation and assembly tasks and present simulation and experimental results of this work.
暂无评论