咨询与建议

限定检索结果

文献类型

  • 416 篇 期刊文献
  • 405 篇 会议

馆藏范围

  • 821 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 499 篇 工学
    • 378 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 94 篇 信息与通信工程
    • 77 篇 生物工程
    • 76 篇 电气工程
    • 57 篇 控制科学与工程
    • 33 篇 电子科学与技术(可...
    • 31 篇 机械工程
    • 31 篇 交通运输工程
    • 28 篇 生物医学工程(可授...
    • 25 篇 光学工程
    • 24 篇 化学工程与技术
    • 18 篇 网络空间安全
    • 16 篇 仪器科学与技术
    • 15 篇 动力工程及工程热...
    • 13 篇 材料科学与工程(可...
  • 261 篇 理学
    • 132 篇 数学
    • 88 篇 生物学
    • 43 篇 物理学
    • 36 篇 统计学(可授理学、...
    • 28 篇 化学
    • 17 篇 系统科学
  • 143 篇 管理学
    • 80 篇 管理科学与工程(可...
    • 68 篇 图书情报与档案管...
    • 25 篇 工商管理
  • 33 篇 医学
    • 25 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 15 篇 公共卫生与预防医...
    • 12 篇 药学(可授医学、理...
  • 19 篇 法学
    • 14 篇 社会学
  • 9 篇 经济学
  • 6 篇 农学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 28 篇 semantics
  • 26 篇 feature extracti...
  • 26 篇 training
  • 24 篇 computational mo...
  • 21 篇 deep learning
  • 19 篇 accuracy
  • 14 篇 task analysis
  • 14 篇 memory managemen...
  • 13 篇 contrastive lear...
  • 13 篇 predictive model...
  • 13 篇 data models
  • 12 篇 graph neural net...
  • 12 篇 codes
  • 12 篇 machine learning
  • 11 篇 scalability
  • 11 篇 deep neural netw...
  • 11 篇 convolution
  • 11 篇 optimization
  • 11 篇 robustness
  • 10 篇 object detection

机构

  • 131 篇 national enginee...
  • 105 篇 national enginee...
  • 74 篇 college of compu...
  • 60 篇 school of comput...
  • 51 篇 school of cyber ...
  • 37 篇 national enginee...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 27 篇 huazhong univers...
  • 27 篇 cluster and grid...
  • 27 篇 shenzhen univers...
  • 26 篇 hubei key labora...
  • 19 篇 zhejiang lab
  • 18 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of softwa...
  • 16 篇 guangdong provin...
  • 15 篇 school of comput...
  • 15 篇 school of inform...
  • 12 篇 hubei key labora...

作者

  • 130 篇 jin hai
  • 129 篇 hai jin
  • 43 篇 xiaofei liao
  • 39 篇 shen linlin
  • 28 篇 liao xiaofei
  • 24 篇 long zheng
  • 24 篇 li jianqiang
  • 23 篇 hu shengshan
  • 21 篇 haikun liu
  • 17 篇 yu zhang
  • 16 篇 zhang leo yu
  • 16 篇 yu huang
  • 16 篇 linlin shen
  • 15 篇 zou deqing
  • 15 篇 deqing zou
  • 15 篇 jianqiang li
  • 14 篇 li tianrui
  • 13 篇 jiang xiao
  • 13 篇 li minghui
  • 12 篇 wang jinbao

语言

  • 750 篇 英文
  • 61 篇 其他
  • 13 篇 中文
检索条件"机构=The National Engineering Laboratory for Big Data System Computing Technology"
821 条 记 录,以下是631-640 订阅
排序:
Rediscovering BCE Loss for Uniform Classification
arXiv
收藏 引用
arXiv 2024年
作者: Li, Qiufu Jia, Xi Zhou, Jiancan Shen, Linlin Duan, Jinming National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Computer Vision Institute Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China School of Computer Science University of Birmingham United Kingdom Aqara Lumi United Technology Co. Ltd China
This paper introduces the concept of uniform classification, which employs a unified threshold to classify all samples rather than adaptive threshold classifying each individual sample. We also propose the uniform cla... 详细信息
来源: 评论
Iterative Refinement of Project-Level Code Context for Precise Code Generation with Compiler Feedback
arXiv
收藏 引用
arXiv 2024年
作者: Bi, Zhangqian Wan, Yao Wang, Zheng Zhang, Hongyu Guan, Batu Lu, Fangxin Zhang, Zili Sui, Yulei Jin, Hai Shi, Xuanhua Huazhong University of Science and Technology China University of Leeds United Kingdom Chongqing University China Shanghai Jiao Tong University China University of New South Wales Australia National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China
Large Language Models (LLMs) have shown remarkable progress in automated code generation. Yet, LLM-generated code may contain errors in API usage, class, data structure, or missing project-specific information. As muc... 详细信息
来源: 评论
Multi-stage network embedding for exploring heterogeneous edges
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Hong Song, Yu Ye, Fanghua Xie, Xing Shi, Xuanhua Jin, Hai The National Engineering Research Center for Big Data Technology Service Computing Technology and System Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China The Department of Computer Science University College London London United Kingdom Microsoft Research Asia Beijing China
The relationships between objects in a network are typically diverse and complex, leading to the heterogeneous edges with different semantic information. In this paper, we focus on exploring the heterogeneous edges fo... 详细信息
来源: 评论
Metadata-Driven Federated Learning of Connectional Brain Templates in Non-IID Multi-Domain Scenarios
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Geng Wang, Qingyue Rekik, Islem National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University China BASIRA Lab Imperial-X Department of Computing Imperial College London United Kingdom
A connectional brain template (CBT) is a holistic representation of a population of multi-view brain connectivity graphs, encoding shared patterns and normalizing typical variations across individuals. The federation ... 详细信息
来源: 评论
Insulating materials for realising carbon neutrality:Opportunities,remaining issues and challenges
收藏 引用
High Voltage 2022年 第4期7卷 610-632页
作者: Chuanyang Li Yang Yang Guoqiang Xu Yao Zhou Mengshuo Jia Shaolong Zhong Yu Gao Chanyeop Park Qiang Liu Yalin Wang Shakeel Akram Xiaoliang Zeng Yi Li Fangwei Liang Bin Cui Junpeng Fang Lingling Tang Yulin Zeng Xingtao Hu Jiachen Gao Giovanni Mazzanti Jinliang He Jianxiao Wang Davide Fabiani Gilbert Teyssedre Yang Cao Feipeng Wang Yunlong Zi The State Key Laboratory of Power System Department of Electrical EngineeringTsinghua UniversityBeijingChina Department of Mechanical and Automation Engineering The Chinese University of Hong KongHong KongChina Simpson Querrey Institute Northwestern UniversityEvanstonIllinoisUSA Department of Materials Science and Engineering The Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA Department of Information Technology and Electrical Engineering ETH ZürichZürichSwitzerland School of Electrical and Information Engineering Tianjin UniversityTianjinChina Department of Electrical and Computer Engineering Mississippi State UniversityMississippi StateMississippiUSA Electrical and Electronic Engineering The University of ManchesterManchesterUK Department of Electrical Engineering School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina Key Laboratory of Control of Power Transmission and Conversion(SJTU) Ministry of EducationShanghaiChina College of Electrical Engineering Sichuan UniversityChengduChina Shenzhen Institute of Advanced Technology Chinese Academy of Sciences ShenzhenShenzhenChina School of Electrical Engineering Wuhan UniversityWuhanChina School of Integrated Circuits Tsinghua UniversityBeijingChina Jiangsu Jinxin Electric Appliance Co.Ltd. YangzhouChina Tai'an Tiancheng Safety Evaluation Co. Ltd.Tai'anChina Department Electrical Electronic and Information EngineeringUniversity of BolognaBolognaItaly National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Laplace Paul Sabatier Universityand CNRSToulouseFrance Electrical and Computer Engineering University of ConnecticutStorrsConnecticutUSA State Key Laboratory of Power Transmission Equipment&System Security and New Technology School of Electrical EngineeringChongqing UniversityChongqingChina Thrust of Sustainable Energy and Environment The Hong Kong University of Science and Technology(Guangzhou)GuangzhouChina De
The 2050 carbon-neutral vision spawns a novel energy structure revolution,and the construction of the future energy structure is based on equipment *** material,as the core of electrical power equipment and electrifie... 详细信息
来源: 评论
STSE-xLSTM: A Deep Learning Framework for Automated Seizure Detection in Long Video Sequences Using Spatio-Temporal and Attention Mechanisms
STSE-xLSTM: A Deep Learning Framework for Automated Seizure ...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Lihui Ding Hongliang Wang Lijun Fu Shenyang Institute of Computing Technology University of Chinese Academy of Sciences Shenyang China Liaoning Province Human-Computer Interaction System Engineering Research Center Based on Digital Twin Shenyang China Laboratory of Big Data and Artificial Intelligence Technology Shandong University Beijing China
A detailed analysis of seizure semiology, the symptoms and signs that occur during a seizure, is crucial for the management of epilepsy patients. The inter-rater reliability of qualitative visual analysis is often low... 详细信息
来源: 评论
Automatic recognition of depression based on audio and video:A review
收藏 引用
World Journal of Psychiatry 2024年 第2期14卷 225-233页
作者: Meng-Meng Han Xing-Yun Li Xin-Yu Yi Yun-Shao Zheng Wei-Li Xia Ya-Fei Liu Qing-Xiang Wang Shandong Mental Health Center Shandong UniversityJinan 250014Shandong ProvinceChina Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science Center(National Supercomputer Center in Jinan)Qilu University of Technology(Shandong Academy of Sciences)Jinan 250353Shandong ProvinceChina Shandong Engineering Research Center of Big Data Applied Technology Faculty of Computer Science and TechnologyQilu University of Technology(Shandong Academy of Sciences)Jinan 250353Shandong ProvinceChina Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer ScienceJinan 250353Shandong ProvinceChina Department of Ward Two Shandong Mental Health CenterShandong UniversityJinan 250014Shandong ProvinceChina
Depression is a common mental health *** current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for ... 详细信息
来源: 评论
iGniter: Interference-Aware GPU Resource Provisioning for Predictable DNN Inference in the Cloud
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Fei Xu, Jianian Chen, Jiabin Chen, Li Shang, Ruitao Zhou, Zhi Liu, Fangming The Shanghai Key Laboratory of Multidimensional Information Processing School of Computer Science and Technology East China Normal University 3663 N. Zhongshan Road Shanghai200062 China The School of Computing and Informatics University of Louisiana at Lafayette 301 East Lewis Street LafayetteLA70504 United States The Guangdong Key Laboratory of Big Data Analysis and Processing School of Computer Science and Engineering Sun Yat-sen University 132 E. Waihuan Road Guangzhou510006 China The National Engineering Research Center for Big Data Technology and System The Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan430074 China
GPUs are essential to accelerating the latency-sensitive deep neural network (DNN) inference workloads in cloud datacenters. To fully utilize GPU resources, spatial sharing of GPUs among co-located DNN inference workl... 详细信息
来源: 评论
PoE: a Panel of Experts for Generalized Automatic Dialogue Assessment
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Chen D'Haro, Luis Fernando Zhang, Qiquan Friedrichs, Thomas Li, Haizhou The Human Language Technology Group at Electrical & Computer Engineering Department National University of Singapore Singapore Spain Pte Ltd Singapore The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China
Chatbots are expected to be knowledgeable across multiple domains, e.g. for daily chit-chat, exchange of information, and grounding in emotional situations. To effectively measure the quality of such conversational ag... 详细信息
来源: 评论
Pointsurface: Discriminative Point Cloud Surface Feature Extraction for 3d Face Recognition
SSRN
收藏 引用
SSRN 2024年
作者: Yang, Junpeng Li, Qiufu Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Guangdong Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Guangdong Shenzhen518172 China
3D face recognition performs better than 2D face recognition, in terms of robustness against lighting and digital attacks. Compared to 2D data, the rich geometric information in 3D data could be very useful to improve... 详细信息
来源: 评论