咨询与建议

限定检索结果

文献类型

  • 121 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 215 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 93 篇 计算机科学与技术...
    • 77 篇 软件工程
    • 26 篇 生物工程
    • 25 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 16 篇 光学工程
    • 15 篇 机械工程
    • 12 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 船舶与海洋工程
  • 83 篇 理学
    • 30 篇 数学
    • 28 篇 生物学
    • 25 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
    • 8 篇 系统科学
  • 48 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 23 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 18 篇 feature extracti...
  • 14 篇 speech recogniti...
  • 13 篇 training
  • 12 篇 pattern recognit...
  • 12 篇 semantics
  • 9 篇 face recognition
  • 6 篇 deep neural netw...
  • 6 篇 hidden markov mo...
  • 6 篇 data mining
  • 6 篇 machine learning
  • 6 篇 image classifica...
  • 6 篇 computer vision
  • 6 篇 character recogn...
  • 5 篇 robustness
  • 5 篇 intelligent syst...
  • 4 篇 support vector m...
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 4 篇 convolution
  • 4 篇 vectors

机构

  • 72 篇 pattern recognit...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 10 篇 guizhou key labo...
  • 9 篇 school of comput...
  • 8 篇 pattern recognit...
  • 6 篇 school of comput...
  • 6 篇 pattern recognit...
  • 5 篇 department of st...
  • 4 篇 university of ch...
  • 4 篇 center for resea...
  • 4 篇 beijing universi...
  • 3 篇 pattern recognit...
  • 3 篇 college of physi...
  • 3 篇 shanghai jiao to...
  • 3 篇 department of st...
  • 3 篇 cas center for e...
  • 3 篇 meituan group
  • 3 篇 key laboratory o...
  • 3 篇 center for resea...

作者

  • 33 篇 guo jun
  • 29 篇 ma zhanyu
  • 29 篇 jun guo
  • 19 篇 gang liu
  • 18 篇 deng weihong
  • 13 篇 honggang zhang
  • 12 篇 liu gang
  • 10 篇 chang dongliang
  • 10 篇 song yi-zhe
  • 9 篇 yang yang
  • 9 篇 li xiaoxu
  • 9 篇 du ruoyi
  • 8 篇 feng fujian
  • 8 篇 liang yihui
  • 8 篇 wang lin
  • 7 篇 zhang honggang
  • 7 篇 wang mei
  • 7 篇 xue jing-hao
  • 6 篇 zhanyu ma
  • 6 篇 wei chen

语言

  • 208 篇 英文
  • 7 篇 中文
  • 2 篇 其他
检索条件"机构=The Pattern Recognition and Intelligent System Laboratory"
215 条 记 录,以下是91-100 订阅
排序:
Mem Brain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction
收藏 引用
Nano-Micro Letters 2018年 第1期10卷 12-19页
作者: Xi Yin Jing Yang Feng Xiao Yang Yang Hong-Bin Shen Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Department of Computer Science Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate t... 详细信息
来源: 评论
ReMarNet: Conjoint relation and margin learning for small-sample image classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Yu, Liyun Yang, Xiaochen Ma, Zhanyu Jing-Hao, Xue Cao, Jie Guo, Jun School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Despite achieving state-of-the-art performance, deep learning methods generally require a large amount of labeled data during training and may suffer from overfitting when the sample size is small. To ensure good gene... 详细信息
来源: 评论
Oslnet: Deep small-sample classification with an orthogonal softmax layer
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Chang, Dongliang Ma, Zhanyu Tan, Zheng-Hua Xue, Jing-Hao Cao, Jie Yu, Jingyi Guo, Jun School of Computer and Communication Lanzhou University of Technology China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Department of Electronic Systems Aalborg University Denmark Department of Statistical Science University College London United Kingdom School of Information Science and Technology ShanghaiTech University China
A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learn... 详细信息
来源: 评论
SRML: Structure-relation mutual learning network for few-shot image classification
收藏 引用
pattern recognition 2025年 168卷
作者: Li, Xiaoxu Wang, Lang Zhu, Rui Ma, Zhanyu Cao, Jie Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Faculty of Actuarial Science and Insurance Bayes Business School City St George's University of London LondonEC1Y 8TZ United Kingdom Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Lanzhou City University Lanzhou730050 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Few-shot image classification aims at tackling a challenging but practical classification setting, where only few labelled images are available for training. Metric-based methods are main-stream solutions for few-shot... 详细信息
来源: 评论
Competing Ratio Loss for Multi-class image Classification
Competing Ratio Loss for Multi-class image Classification
收藏 引用
IEEE Visual Communications and Image Processing Conference
作者: Ke Zhang Xinsheng Wang Yurong Guo Zhenbing Zhao Zhanyu Ma Department of Electronic and Communication Engineering North China Electric Power University Hebei China Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Cross-entropy loss function (CEL) is widely used for training a multi-class classification deep convolutional neural network (DCNN). While CEL has been successfully implemented in image classification tasks, it only f...
来源: 评论
Omni-supervised Facial Expression recognition via Distilled Data
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Wei, Yunchao Meng, Zibo Deng, Weihong Zhou, Joey Tianyi Yang, Yi Center for Frontier AI Research Agency for Science Technology and Research Singapore Singapore Institute of information science Beijing Jiaotong University Beijing China Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China InnoPeak Technology Inc. Palo Alto United States
Facial expression plays an important role in understanding human emotions. Most recently, deep learning based methods have shown promising for facial expression recognition. However, the performance of the current sta... 详细信息
来源: 评论
Point adversarial self mining: A simple method for facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Lin, Yuewei Meng, Zibo Lu, Lu Deng, Weihong Zhou, Joey Tianyi Yang, Yi Institute of High Performance Computing Agency for Science Technology and Research Singapore Singapore Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China Brookhaven National Laboratory UptonNY United States InnoPeak Technology Inc. Palo AltoCA United States Key Laboratory of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai China
In this paper, we propose a simple yet effective approach, named Point Adversarial Self Mining (PASM), to improve the recognition accuracy in facial expression recognition. Unlike previous works focusing on designing ... 详细信息
来源: 评论
Feature Fusion of Speech Emotion recognition Based on Deep Learning
Feature Fusion of Speech Emotion Recognition Based on Deep L...
收藏 引用
IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)
作者: Gang Liu Wei He Bicheng Jin Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Speech emotion recognition (SER) is a hot topic in academia. One of the key issues in improving the performance of SER systems is the choice of speech emotion features. In order to establish a robust speech emotion re... 详细信息
来源: 评论
CNN-Based Audio Front End Processing on Speech recognition
CNN-Based Audio Front End Processing on Speech Recognition
收藏 引用
International Conference on Audio, Language and Image Processing, ICALIP
作者: Ruchao Fan Gang Liu Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Recently, Convolutional Neural Networks (CNNs) have become widely used in the field of speech recognition. Their role is to mitigate the spectral shifts caused by differences between the speakers and the environment. ... 详细信息
来源: 评论
Deep neural network for analysis of DNA methylation data
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Hong Ma, Zhanyu Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Many researches demonstrated that the DNA methylation, which occurs in the context of a CpG, has strong correlation with diseases, including cancer. There is a strong interest in analyzing the DNA methylation data to ... 详细信息
来源: 评论