Single particle cryo-electron microscopy (EM) is an increasingly popular method for determining the 3-D structure of macromolecules from noisy 2-D images of single macromolecules whose orientations and positions are r...
详细信息
We propose the coarse-grained spectral projection method (CGSP), a deep learning-assisted approach for tackling quantum unitary dynamic problems with an emphasis on quench dynamics. We show CGSP can extract spectral c...
详细信息
The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional general...
The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional generalization of the bonds flip, another is more sophisticated algorithm, based on Schwinger–Dyson equations. We found such care necessary, because our results appear to be quite unexpected. We simulated up to 60000 tetrahedra and observed none of the feared pathologies like factorial growth of the partition function with volume, or collapse to the branched polymer phase. The volume of the Universe grows exponentially when the bare cosmological constant λ approaches the critical value λ c from above, but the closed Universe exists and has peculiar continuum limit. The Universe compressibility diverges as (λ − λ c ) −2 and the bare Newton constant linearly approaches negative critical value as λ goes to λ c , provided the average curvature is kept at zero. The fractal properties turned out to be the same, as in two dimensions, namely the effective Hausdorff dimension grows logarithmically with the size of the test geodesic sphere.
We establish a scale separation of Kolmogorov width type between subspaces of a given Banach space under the condition that a sequence of linear maps converges much faster on one of the subspaces. The general techniqu...
详细信息
This paper presents a systematic approach for finding efficient boundary conditions for molecular dynamics simulations of crystalline solids. These boundary conditions effectively eliminate phonon reflection at the bo...
This paper presents a systematic approach for finding efficient boundary conditions for molecular dynamics simulations of crystalline solids. These boundary conditions effectively eliminate phonon reflection at the boundary and at the same time allow the thermal energy from the bath to be introduced to the system. Our starting point is the Mori-Zwanzig formalism [R. Zwanzig, J. Chem. Phys. 32, 1173 (1960); in Systems Far from Equilibrium, edited by L. Garrido (Interscience, New York, 1980); H. Mori, Prog. Theor. Phys. 33, 423 (1965)] for eliminating the thermal bath, but we take the crucial next step that goes beyond this formalism in order to obtain memory kernels that decay faster. An equivalent variational formulation allows us to find the optimal approximate boundary conditions, after specifying the spatial-temporal domain of dependence for the positions of the boundary atoms. Application to a one-dimensional chain, a two-dimensional Lennard-Jones system, and a three-dimensional model of α-iron with embedded atom potential is presented to demonstrate the effectiveness of this approach.
Machine learning is poised as a very powerful tool that can drastically improve our ability to carry out scientific research. However, many issues need to be addressed before this becomes a reality. This article focus...
详细信息
Models for learning probability distributions such as generative models and density estimators behave quite differently from models for learning functions. One example is found in the memorization phenomenon, namely t...
详细信息
The radiative transfer equation (RTE) arises in a variety of applications. The equation is challenging to solve numerically for a couple of reasons: high dimensionality, integro-differential form, highly forward-peake...
详细信息
We propose an efficient and robust iterative solution to the multi-object matching problem. We first clarify serious limitations of current methods as well as the inappropriateness of the standard iteratively reweight...
详细信息
Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen...
详细信息
Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.
暂无评论