咨询与建议

限定检索结果

文献类型

  • 899 篇 期刊文献
  • 128 篇 会议
  • 6 册 图书

馆藏范围

  • 1,033 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 465 篇 物理学
    • 429 篇 数学
    • 188 篇 统计学(可授理学、...
    • 108 篇 化学
    • 100 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 597 篇 工学
    • 208 篇 计算机科学与技术...
    • 158 篇 软件工程
    • 100 篇 力学(可授工学、理...
    • 100 篇 材料科学与工程(可...
    • 81 篇 控制科学与工程
    • 78 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 76 篇 电气工程
    • 71 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 化学工程与技术
    • 58 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 57 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 12 篇 农学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 131 篇 program in appli...
  • 89 篇 program in appli...
  • 63 篇 department of ch...
  • 63 篇 department of ch...
  • 46 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 department of ph...
  • 39 篇 program in appli...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 18 篇 applied mathemat...
  • 16 篇 department of ch...
  • 16 篇 princeton instit...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 32 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 26 篇 jasra ajay
  • 25 篇 s. torquato
  • 24 篇 weinan e
  • 19 篇 car roberto
  • 18 篇 han jiequn
  • 17 篇 emily a. carter
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 980 篇 英文
  • 47 篇 其他
  • 4 篇 中文
检索条件"机构=The Program of Applied and Computational Mathematics"
1033 条 记 录,以下是481-490 订阅
排序:
Probabilistic Theory of Mean Field Games with Applications I  1
收藏 引用
丛书名: Probability Theory and Stochastic Modelling
2018年
作者: René Carmona François Delarue
Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illust... 详细信息
来源: 评论
Classification of datasets with imputed missing values: does imputation quality matter?
arXiv
收藏 引用
arXiv 2022年
作者: Shadbahr, Tolou Roberts, Michael Stanczuk, Jan Gilbey, Julian Teare, Philip Dittmer, Sören Thorpe, Matthew Torné, Ramon Viñas Sala, Evis Lió, Pietro Patel, Mishal Rudd, James H.F. Mirtti, Tuomas Rannikko, Antti Sakari Aston, John A.D. Tang, Jing Schönlieb, Carola-Bibiane Selby, Ian Breger, Anna Weir-McCall, Jonathan R. Gkrania-Klotsas, Effrossyni Korhonen, Anna Jefferson, Emily Langs, Georg Yang, Guang Prosch, Helmut Preller, Jacobus Stanczuk, Jan Babar, Judith Sánchez, Lorena Escudero Wassin, Marcel Holzer, Markus Walton, Nicholas Research Program in Systems Oncology Faculty of Medicine University of Helsinki Helsinki Finland Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom Data Science & Artificial Intelligence AstraZeneca Cambridge United Kingdom Department of Mathematics University of Manchester Manchester United Kingdom Department of Computer Science and Technology University of Cambridge Cambridge United Kingdom Department of Radiology University of Cambridge Cambridge United Kingdom Clinical Pharmacology & Safety Sciences AstraZeneca Cambridge United Kingdom Department of Medicine University of Cambridge Cambridge United Kingdom Department of Pathology University of Helsinki Helsinki University Hospital Finland iCAN-Digital Precision Cancer Medicine Flagship Helsinki Finland Department of Urology University of Helsinki Helsinki University Hospital Helsinki Finland Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge United Kingdom ZeTeM University of Bremen Bremen Germany Faculty of Mathematics University of Vienna Austria Royal Papworth Hospital Cambridge Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom Addenbrooke’s Hospital Cambridge University Hospitals NHS Trust Cambridge United Kingdom Language Technology Laboratory University of Cambridge Cambridge United Kingdom Population Health and Genomics School of Medicine University of Dundee Dundee United Kingdom Department of Biomedical Imaging and Image-guided Therapy Computational Imaging Research Lab Medical University of Vienna Vienna Austria National Heart and Lung Institute Imperial College London London United Kingdom Contextflow GmbH Vienna Austria Institute of Astronomy University of Cambridge Cambridge United Kingdom
Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using... 详细信息
来源: 评论
Deep learning inter-atomic potential model for accurate irradiation damage simulationsa)
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Hao Guo, Xun Zhang, Linfeng Wang, Han Xue, Jianming State Key Laboratory of Nuclear Physics and Technology School of Physics CAPT HEDPS IFSA Collaborative Innovation Center of MoE College of Engineering Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Beijing100871 China State Key Laboratory of Nuclear Physics and Technology School of Physics CAPT HEDPS IFSA Collaborative Innovation Center of MoE College of Engineering Peking University Beijing100871 China
We propose a hybrid scheme that interpolates smoothly the Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion potential with a newly developed deep learning potential energy model. The resulting DP-ZBL model ca... 详细信息
来源: 评论
Methodology to construct large realizations of perfectly hyperuniform disordered packings
收藏 引用
Physical Review E 2019年 第5期99卷 052141-052141页
作者: Jaeuk Kim Salvatore Torquato Department of Physics Princeton University Princeton New Jersey 08544 USA Department of Chemistry Princeton University Princeton New Jersey 08544 USA Princeton Institute for the Science and Technology of Materials Princeton University Princeton New Jersey 08544 USA Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA
Disordered hyperuniform packings (or dispersions) are unusual amorphous two-phase materials that are endowed with exotic physical properties. Such hyperuniform systems are characterized by an anomalous suppression of ... 详细信息
来源: 评论
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  18
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Linfeng Zhang Jiequn Han Han Wang Wissam A. Saidi Roberto Car E. Weinan Program in Applied and Computational Mathematics Princeton University Institute of Applied Physics and Computational Mathematics China and CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh Program in Applied and Computational Mathematics Princeton University and Department of Chemistry and Department of Physics Princeton University and Princeton Institute for the Science and Technology of Materials Princeton University Program in Applied and Computational Mathematics Princeton University and Department of Mathematics Princeton University and Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene...
来源: 评论
Isotope effects in liquid water via deep potential molecular dynamics
arXiv
收藏 引用
arXiv 2019年
作者: Ko, Hsin-Yu Zhang, Linfeng Santra, Biswajit Wang, Han Weinan, E. DiStasio, Robert A. Cara, Roberto Department of Chemistry Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Physics Temple University PhiladelphiaPA19122 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics Princeton University PrincetonNJ08544 United States Department of Chemistry and Chemical Biology Cornell University IthacaNY14853 United States Department of Physics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States
A comprehensive microscopic understanding of ambient liquid water is a major challenge for ab initio simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential ene... 详细信息
来源: 评论
Universal approximation of symmetric and anti-symmetric functions
arXiv
收藏 引用
arXiv 2019年
作者: Han, Jiequn Li, Yingzhou Lin, Lin Lu, Jianfeng Zhang, Jiefu Zhang, Linfeng Department of Mathematics Princeton University PrincetonNJ08544 United States Department of Mathematics Duke University DurhamNC27708 United States Department of Mathematics University of California BerkeleyCA94720 United States Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Department of Mathematics Department of Physics Department of Chemistry Duke University DurhamNC27708 United States Department of Mathematics University of California BerkeleyCA94720 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
We consider universal approximations of symmetric and anti-symmetric functions, which are important for applications in quantum physics, as well as other scientific and engineering computations. We give constructive a... 详细信息
来源: 评论
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  32
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
32nd Conference on Neural Information Processing Systems, NeurIPS 2018
作者: Zhang, Linfeng Han, Jiequn Wang, Han Saidi, Wissam A. Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University United States Institute of Applied Physics and Computational Mathematics China CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh United States Department of Chemistry Department of Physics Princeton University United States Princeton Institute for the Science and Technology of Materials Princeton University United States Department of Mathematics Princeton University United States Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene... 详细信息
来源: 评论
Manifold learning-based methods for analyzing single-cell RNA-sequencing data
收藏 引用
Current Opinion in Systems Biology 2018年 7卷 36-46页
作者: Moon, Kevin R. Stanley, Jay S. Burkhardt, Daniel van Dijk, David Wolf, Guy Krishnaswamy, Smita Department of Genetics Yale University New Haven CT United States Applied Mathematics Program Yale University New Haven CT United States Computational Biology and Bioinformatics Program Yale University New Haven CT United States Department of Computer Science Yale University New Haven CT United States
Recent advances in single-cell RNA sequencing technologies enable deep insights into cellular development, gene regulation, and phenotypic diversity by measuring gene expression for thousands of cells in a single expe... 详细信息
来源: 评论
Geometry based data generation  32
Geometry based data generation
收藏 引用
32nd Conference on Neural Information Processing Systems, NeurIPS 2018
作者: Lindenbaum, Ofir Wolf, Guy Stanley, Jay S. Krishnaswamy, Smita Applied Mathematics Program Yale University New HavenCT06511 United States Computational Biology and Bioinformatics Program Yale University New HavenCT06510 United States Departments of Genetics and Computer Science Yale University New HavenCT06510 United States
We propose a new type of generative model for high-dimensional data that learns a manifold geometry of the data, rather than density, and can generate points evenly along this manifold. This is in contrast to existing... 详细信息
来源: 评论