咨询与建议

限定检索结果

文献类型

  • 3,534 篇 会议
  • 2,549 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 6,084 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,100 篇 工学
    • 2,830 篇 计算机科学与技术...
    • 2,301 篇 软件工程
    • 1,050 篇 信息与通信工程
    • 515 篇 电气工程
    • 472 篇 生物工程
    • 468 篇 控制科学与工程
    • 458 篇 电子科学与技术(可...
    • 383 篇 光学工程
    • 298 篇 生物医学工程(可授...
    • 284 篇 机械工程
    • 256 篇 化学工程与技术
    • 202 篇 仪器科学与技术
    • 137 篇 动力工程及工程热...
    • 137 篇 网络空间安全
    • 134 篇 材料科学与工程(可...
    • 110 篇 建筑学
    • 106 篇 交通运输工程
  • 2,210 篇 理学
    • 1,192 篇 数学
    • 661 篇 物理学
    • 525 篇 生物学
    • 363 篇 统计学(可授理学、...
    • 270 篇 化学
    • 166 篇 系统科学
  • 1,065 篇 管理学
    • 567 篇 图书情报与档案管...
    • 538 篇 管理科学与工程(可...
    • 191 篇 工商管理
  • 249 篇 医学
    • 211 篇 临床医学
    • 186 篇 基础医学(可授医学...
    • 117 篇 药学(可授医学、理...
  • 148 篇 法学
    • 117 篇 社会学
  • 81 篇 教育学
  • 76 篇 农学
  • 51 篇 经济学
  • 21 篇 军事学
  • 18 篇 文学
  • 11 篇 艺术学
  • 5 篇 哲学

主题

  • 262 篇 feature extracti...
  • 234 篇 semantics
  • 164 篇 training
  • 131 篇 accuracy
  • 121 篇 computational mo...
  • 111 篇 deep learning
  • 105 篇 convolution
  • 87 篇 data mining
  • 84 篇 image segmentati...
  • 78 篇 object detection
  • 78 篇 data models
  • 76 篇 visualization
  • 70 篇 contrastive lear...
  • 70 篇 robustness
  • 70 篇 convolutional ne...
  • 66 篇 optimization
  • 64 篇 predictive model...
  • 63 篇 neural networks
  • 61 篇 federated learni...
  • 59 篇 face recognition

机构

  • 210 篇 shandong provinc...
  • 192 篇 key laboratory o...
  • 187 篇 hubei province k...
  • 143 篇 key laboratory o...
  • 141 篇 school of comput...
  • 141 篇 school of inform...
  • 116 篇 college of compu...
  • 104 篇 provincial key l...
  • 99 篇 fujian provincia...
  • 85 篇 shandong provinc...
  • 76 篇 national key lab...
  • 74 篇 university of ch...
  • 73 篇 peng cheng labor...
  • 71 篇 shandong provinc...
  • 63 篇 school of comput...
  • 62 篇 hubei province k...
  • 62 篇 shanghai key lab...
  • 60 篇 shanghai key lab...
  • 52 篇 fujian provincia...
  • 52 篇 school of comput...

作者

  • 64 篇 li zuoyong
  • 56 篇 huang qingming
  • 52 篇 zhaohui li
  • 51 篇 li zhaohui
  • 46 篇 li chenglong
  • 44 篇 zhang fuquan
  • 34 篇 tang jin
  • 33 篇 li wei
  • 32 篇 fan li
  • 32 篇 shen linlin
  • 31 篇 guo di
  • 31 篇 wang wei
  • 30 篇 zuoyong li
  • 30 篇 boxin shi
  • 29 篇 feng rui
  • 28 篇 yang zhiyong
  • 27 篇 wang xiao
  • 25 篇 liu yang
  • 25 篇 gao guanglai
  • 25 篇 li fan

语言

  • 5,516 篇 英文
  • 432 篇 其他
  • 145 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=The Provincial Key Laboratory for Computer Information Processing Technology"
6084 条 记 录,以下是4621-4630 订阅
排序:
Combining Event-level and Cross-event Semantic information for Event-Oriented Relation Classification by SCNN
Combining Event-level and Cross-event Semantic Information f...
收藏 引用
第十五届全国计算语言学学术会议(CCL2016)暨第四届基于自然标注大数据的自然语言处理国际学术研讨会(NLP-NABD-2016)
作者: Siyuan Ding Yu Hong Shanshan Zhu Jianmin Yao Qiaoming Zhu Provincial Key Laboratory of Computer Information Processing Technology Soochow UniversitySuzhouChina
Previous researches on event relation classification primarily rely on lexical and syntactic *** this paper,we use a Shallow Convolutional Neural Network(SCNN)to extract event-level and cross-event semantic features f... 详细信息
来源: 评论
SG++: Word representation with sentiment and negation for twitter sentiment classification  16
SG++: Word representation with sentiment and negation for tw...
收藏 引用
39th International ACM SIGIR Conference on Research and Development in information Retrieval, SIGIR 2016
作者: Hu, Qinmin Pei, Yijun Chen, Qin He, Liang Shanghai Key Laboratory of Multidimensional Information Processing Department of Computer Science and Technology East China Normal University Shanghai200241 China
Here we propose an advance Skip-gram model to incorporate both word sentiment and negation information. In particular, there is aa softmax layer for the word sentiment polarity upon the Skip-gram model. Then, two para... 详细信息
来源: 评论
ECNU at SemEval-2016 Task 6: Relevant or not? Supportive or not? A two-step learning system for automatic Detecting Stance in Tweets  10
ECNU at SemEval-2016 Task 6: Relevant or not? Supportive or ...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Zhang, Zhihua Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper describes our submissions to Task 6, i.e., Detecting Stance in Tweets, in SemEval 2016, which aims at detecting the stance of tweets towards given target. There are three stance labels: Favor (directly or i... 详细信息
来源: 评论
A mean shift assisted differential evolution algorithm  11th
A mean shift assisted differential evolution algorithm
收藏 引用
11th International Conference on Bio-inspired Computing – Theories and Applications, BIC-TA 2016
作者: Fang, Hui Zhou, Aimin Zhang, Guixu Shanghai Key Laboratory of Multidimensional Information Processing Department of Computer Science and Technology East China Normal University Shanghai200241 China
It is well known that Differential Evolution (DE) algorithm has been widely applied to solve global optimization problems during the last decades. DE is usually criticized for the slow convergence. To improve the algo... 详细信息
来源: 评论
ECNU at SemEval-2016 task 5: Extracting effective features from relevant fragments in sentence for aspect-based sentiment analysis in reviews  10
ECNU at SemEval-2016 task 5: Extracting effective features f...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Jiang, Mengxiao Zhang, Zhihua Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper describes our systems submitted to the Sentence-level and Text-level Aspect-Based Sentiment Analysis (ABSA) task (i.e., Task 5) in SemEval-2016. The task involves two phases, namely, Aspect Detection phase ... 详细信息
来源: 评论
ECNU at SemEval-2016 Task 4: An empirical investigation of traditional NLP features and word embedding features for sentence-level and topic-level sentiment analysis in twitter  10
ECNU at SemEval-2016 Task 4: An empirical investigation of t...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Zhou, Yunxiao Zhang, Zhihua Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper reports our submissions to Task 4, i.e., Sentiment Analysis in Twitter (SAT), in SemEval 2016, which consists of five subtasks grouped into two levels: (1) sentence level, i.e., message polarity classificat... 详细信息
来源: 评论
Two end-to-end shallow discourse parsers for English and Chinese in CoNLL-2016 shared task  20
Two end-to-end shallow discourse parsers for English and Chi...
收藏 引用
20th SIGNLL Conference on Computational Natural Language Learning: Shared Task, CoNLL 2016
作者: Wang, Jianxiang Lan, Man Shanghai Key Laboratory of Multidimensional Information Processing Department of Computer Science and Technology East China Normal University Shanghai200241 China
This paper describes our two discourse parsers (i.e., English discourse parser and Chinese discourse parser) for submission to CoNLL-2016 shared task on Shallow Discourse Parsing. For English discourse parser, we buil... 详细信息
来源: 评论
ECNU at SemEval-2016 task 7: An enhanced supervised learning method for Lexicon Sentiment Intensity ranking  10
ECNU at SemEval-2016 task 7: An enhanced supervised learning...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Wang, Feixiang Zhang, Zhihua Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper describes our system submissions to task 7 in SemEval 2016, i.e., Determining Sentiment Intensity. We participated the first two subtasks in English, which are to predict the sentiment intensity of a word o... 详细信息
来源: 评论
ECNU at SemEval-2016 task 3: Exploring traditional method and deep learning method for question retrieval and answer ranking in community question answering  10
ECNU at SemEval-2016 task 3: Exploring traditional method an...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Wu, Guoshun Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper describes the system we submitted to the task 3 (Community Question Answering) in SemEval 2016, which contains three subtasks, i.e., Question-Comment Similarity (subtask A), Question-Question Similarity (su... 详细信息
来源: 评论
ECNU at SemEval-2016 task 1: Leveraging word embedding from macro and micro views to boost performance for semantic textual similarity  10
ECNU at SemEval-2016 task 1: Leveraging word embedding from ...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Tian, Junfeng Lan, Man Department of Computer Science and Technology East China Normal University Shanghai China Shanghai Key Laboratory of Multidimensional Information Processing China
This paper presents our submissions for semantic textual similarity task in SemEval 2016. Based on several traditional features (i.e., string-based, corpus-based, machine translation similarity and alignment metrics),... 详细信息
来源: 评论