咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 390 篇 会议

馆藏范围

  • 849 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 447 篇 计算机科学与技术...
    • 412 篇 控制科学与工程
    • 285 篇 电气工程
    • 74 篇 软件工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 28 篇 信息与通信工程
    • 18 篇 机械工程
    • 16 篇 土木工程
    • 13 篇 测绘科学与技术
    • 13 篇 交通运输工程
    • 12 篇 生物工程
    • 9 篇 航空宇航科学与技...
    • 8 篇 船舶与海洋工程
    • 6 篇 建筑学
  • 110 篇 理学
    • 38 篇 生物学
    • 31 篇 物理学
    • 28 篇 数学
    • 13 篇 化学
    • 10 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 5 篇 海洋科学
  • 107 篇 医学
    • 67 篇 临床医学
    • 47 篇 基础医学(可授医学...
    • 24 篇 特种医学
    • 6 篇 医学技术(可授医学...
  • 67 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 22 篇 教育学
    • 14 篇 教育学
    • 10 篇 心理学(可授教育学...
  • 11 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 59 篇 task analysis
  • 58 篇 robots
  • 55 篇 reinforcement le...
  • 47 篇 training
  • 38 篇 trajectory
  • 36 篇 robot sensing sy...
  • 29 篇 deep learning
  • 26 篇 machine learning
  • 24 篇 object detection
  • 24 篇 robot kinematics
  • 23 篇 planning
  • 22 篇 three-dimensiona...
  • 22 篇 feature extracti...
  • 19 篇 motion planning
  • 19 篇 visualization
  • 18 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 end effectors
  • 16 篇 grasping
  • 15 篇 estimation

机构

  • 50 篇 univ stuttgart m...
  • 17 篇 imperial coll lo...
  • 15 篇 the robot learni...
  • 15 篇 dyson robot lear...
  • 13 篇 delft univ techn...
  • 13 篇 natl engn lab de...
  • 12 篇 fraunhofer iosb ...
  • 11 篇 chinese acad sci...
  • 11 篇 univ sci & techn...
  • 11 篇 max planck inst ...
  • 10 篇 carnegie mellon ...
  • 10 篇 univ bern artorg...
  • 10 篇 chinese acad sci...
  • 9 篇 univ massachuset...
  • 9 篇 dyson robot lear...
  • 9 篇 tech univ munich...
  • 8 篇 univ chinese aca...
  • 8 篇 esiea learning d...
  • 8 篇 xi an jiao tong ...
  • 8 篇 max planck inst ...

作者

  • 67 篇 toussaint marc
  • 55 篇 johns edward
  • 30 篇 kragic danica
  • 25 篇 zhou s. kevin
  • 22 篇 james stephen
  • 22 篇 peters jan
  • 18 篇 marchal-crespo l...
  • 16 篇 rosasco lorenzo
  • 15 篇 schoellig angela...
  • 13 篇 driess danny
  • 13 篇 liu yong
  • 12 篇 di palo norman
  • 12 篇 billard aude
  • 12 篇 folkesson john
  • 12 篇 ogren petter
  • 11 篇 mainprice jim
  • 11 篇 schaal stefan
  • 11 篇 seo younggyo
  • 10 篇 beyerer juergen
  • 10 篇 specker andreas

语言

  • 831 篇 英文
  • 17 篇 其他
检索条件"机构=The Robot Learning Lab"
849 条 记 录,以下是51-60 订阅
排序:
Where To Start? Transferring Simple Skills to Complex Environments  6
Where To Start? Transferring Simple Skills to Complex Enviro...
收藏 引用
6th Conference on robot learning (CoRL)
作者: Vosylius, Vitalis Johns, Edward Imperial Coll London Robot Learning Lab London England
robot learning provides a number of ways to teach robots simple skills, such as grasping. However, these skills are usually trained in open, clutter-free environments, and therefore would likely cause undesirable coll... 详细信息
来源: 评论
Demonstrate Once, Imitate Immediately (DOME): learning Visual Servoing for One-Shot Imitation learning
Demonstrate Once, Imitate Immediately (DOME): Learning Visua...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Valassakis, Eugene Papagiannis, Georgios Di Palo, Norman Johns, Edward Imperial Coll London Robot Learning Lab London England
We present DOME, a novel method for one-shot imitation learning, where a task can be learned from just a single demonstration and then be deployed immediately, without any further data collection or training. DOME doe... 详细信息
来源: 评论
learning Mechanical Impulse Response for Understanding Surface Characteristics  18th
Learning Mechanical Impulse Response for Understanding Surfa...
收藏 引用
18th International Conference on Intelligent Autonomous Systems (IAS)
作者: Lee, Joohyun Ryu, Semin Kim, Seung-Chan Sungkyunkwan Univ Dept Sport Interact Sci Machine Learning Syst Lab Suwon South Korea Hallym Univ Intelligent Robot Lab Chunchon South Korea
This paper proposes an intelligent system that identifies the nature of a surface by knocking on it and interpreting the resultant vibrations to comprehend the complexity.
来源: 评论
Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2022年 第2期7卷 5512-5519页
作者: Liu, Xu Nardari, Guilherme, V Ojeda, Fernando Cladera Tao, Yuezhan Zhou, Alex Donnelly, Thomas Qu, Chao Chen, Steven W. Romero, Roseli A. F. Taylor, Camillo J. Kumar, Vijay Univ Penn GRASP Lab Philadelphia PA 19104 USA Univ Sao Paulo Robot Learning Lab Sao Paulo SP Brazil
Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the ac... 详细信息
来源: 评论
Differentiable Physics Simulation of Dynamics-Augmented Neural Objects
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2023年 第5期8卷 2780-2787页
作者: Le Cleac'h, Simon Yu, Hong-Xing Guo, Michelle Howell, Taylor Gao, Ruohan Wu, Jiajun Manchester, Zachary Schwager, Mac Stanford Univ Multirobot Syst Lab Stanford CA 94305 USA Carnegie Mellon Univ Robot Explorat Lab Pittsburgh PA 15213 USA Stanford Univ Stanford Vis & Learning Lab Stanford CA 94305 USA
We present a differentiable pipeline for simulating the motion of objects that represent their geometry as a continuous density field parameterized as a deep network. This includes Neural Radiance Fields (NeRFs), and ... 详细信息
来源: 评论
Sensorimotor learning With Stability Guarantees via Autonomous Neural Dynamic Policies
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第2期10卷 1760-1767页
作者: Totsila, Dionis Chatzilygeroudis, Konstantinos Modugno, Valerio Hadjivelichkov, Denis Kanoulas, Dimitrios Univ Lorraine Inria CNRS Loria F-54000 Nancy France Univ Patras Dept Math Computat Intelligence Lab CILab Patras 26504 Greece Univ Patras Dept Elect & Comp Engn Lab Automat & Robot LAR Patras 26504 Greece UCL Dept Comp Sci Robot Percept & Learning Lab RPL Lab London WC1E 6BT England Archimedes Athena RC Maroussi 15125 Greece
State-of-the-art sensorimotor learning algorithms, either in the context of reinforcement learning or imitation learning, offer policies that can often produce unstable behaviors, damaging the robot and/or the environ... 详细信息
来源: 评论
Hierarchical Task Model Predictive Control for Sequential Mobile Manipulation Tasks
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2024年 第2期9卷 1270-1277页
作者: Du, Xintong Zhou, Siqi Schoellig, Angela P. Tech Univ Munich Learning Syst & Robot Lab D-80333 Munich Germany Univ Toronto Inst Aerosp Studies Toronto ON M5S 1A1 Canada Univ Toronto Munich Inst Robot & Machine Intelligence MIRMI Vector Inst Artificial Intelligence Robot Inst Toronto ON M5S 1A4 Canada
Mobile manipulators are envisioned to serve more complex roles in people's everyday lives. With recent breakthroughs in large language models, task planners have become better at translating human verbal instructi... 详细信息
来源: 评论
EnQuery: Ensemble Policies for Diverse Query-Generation in Preference Alignment of robot Navigation  33
EnQuery: Ensemble Policies for Diverse Query-Generation in P...
收藏 引用
33rd IEEE International Conference on robot and Human Interactive Communication (IEEE RO-MAN) - Embracing Human-Centered HRI
作者: de Heuvel, Jorge Seiler, Florian Bennewitz, Maren Univ Bonn Humanoid Robots Lab Bonn Germany Univ Bonn Ctr Robot Bonn Germany Lamarr Inst Machine Learning & Artificial Intelli Bonn Germany
To align mobile robot navigation policies with user preferences through reinforcement learning from human feedback (RLHF), reliable and behavior-diverse user queries are required. However, deterministic policies fail ... 详细信息
来源: 评论
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task robotic Manipulation
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Xiao Patidar, Sumit Haughton, Iain James, Stephen Dyson Robot Learning Lab
This paper introduces Hierarchical Diffusion Policy (HDP), a hierarchical agent for multi-task robotic manipulation. HDP factorises a manipulation policy into a hierarchical structure: a high-level task-planning agent... 详细信息
来源: 评论
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark
arXiv
收藏 引用
arXiv 2024年
作者: Chernyadev, Nikita Backshall, Nicholas Ma, Xiao Lu, Yunfan Seo, Younggyo James, Stephen Dyson Robot Learning Lab
We introduce BiGym, a new benchmark and learning environment for mobile bi-manual demo-driven robotic manipulation. BiGym features 40 diverse tasks set in home environments, ranging from simple target reaching to comp... 详细信息
来源: 评论