咨询与建议

限定检索结果

文献类型

  • 461 篇 期刊文献
  • 391 篇 会议

馆藏范围

  • 852 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 446 篇 计算机科学与技术...
    • 413 篇 控制科学与工程
    • 285 篇 电气工程
    • 73 篇 软件工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 28 篇 信息与通信工程
    • 18 篇 机械工程
    • 15 篇 土木工程
    • 13 篇 测绘科学与技术
    • 13 篇 交通运输工程
    • 12 篇 生物工程
    • 9 篇 航空宇航科学与技...
    • 8 篇 船舶与海洋工程
  • 110 篇 理学
    • 38 篇 生物学
    • 31 篇 物理学
    • 28 篇 数学
    • 13 篇 化学
    • 10 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 5 篇 海洋科学
    • 5 篇 系统科学
  • 107 篇 医学
    • 67 篇 临床医学
    • 47 篇 基础医学(可授医学...
    • 24 篇 特种医学
    • 6 篇 医学技术(可授医学...
  • 67 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 22 篇 教育学
    • 14 篇 教育学
    • 10 篇 心理学(可授教育学...
  • 11 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 59 篇 task analysis
  • 59 篇 robots
  • 55 篇 reinforcement le...
  • 49 篇 training
  • 38 篇 trajectory
  • 36 篇 robot sensing sy...
  • 29 篇 deep learning
  • 26 篇 machine learning
  • 24 篇 object detection
  • 24 篇 planning
  • 24 篇 robot kinematics
  • 23 篇 three-dimensiona...
  • 22 篇 feature extracti...
  • 20 篇 visualization
  • 19 篇 motion planning
  • 18 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 end effectors
  • 16 篇 grasping
  • 15 篇 estimation

机构

  • 50 篇 univ stuttgart m...
  • 17 篇 imperial coll lo...
  • 15 篇 the robot learni...
  • 15 篇 dyson robot lear...
  • 13 篇 delft univ techn...
  • 13 篇 natl engn lab de...
  • 12 篇 fraunhofer iosb ...
  • 11 篇 chinese acad sci...
  • 11 篇 univ sci & techn...
  • 11 篇 max planck inst ...
  • 10 篇 carnegie mellon ...
  • 10 篇 univ bern artorg...
  • 10 篇 chinese acad sci...
  • 10 篇 dyson robot lear...
  • 9 篇 univ massachuset...
  • 9 篇 tech univ munich...
  • 8 篇 univ chinese aca...
  • 8 篇 esiea learning d...
  • 8 篇 xi an jiao tong ...
  • 8 篇 max planck inst ...

作者

  • 67 篇 toussaint marc
  • 55 篇 johns edward
  • 30 篇 kragic danica
  • 25 篇 zhou s. kevin
  • 22 篇 james stephen
  • 22 篇 peters jan
  • 18 篇 marchal-crespo l...
  • 16 篇 rosasco lorenzo
  • 15 篇 schoellig angela...
  • 13 篇 driess danny
  • 13 篇 liu yong
  • 12 篇 di palo norman
  • 12 篇 billard aude
  • 12 篇 folkesson john
  • 12 篇 ogren petter
  • 11 篇 mainprice jim
  • 11 篇 schaal stefan
  • 11 篇 seo younggyo
  • 10 篇 beyerer juergen
  • 10 篇 specker andreas

语言

  • 835 篇 英文
  • 16 篇 其他
检索条件"机构=The Robot Learning Lab"
852 条 记 录,以下是61-70 订阅
排序:
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task robotic Manipulation
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Tas...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xiao Ma Sumit Patidar Iain Haughton Stephen James Dyson Robot Learning Lab
This paper introduces Hierarchical Diffusion Policy (HDP), a hierarchical agent for multi-task robotic manipulation. HDP factorises a manipulation policy into a hierarchical structure: a high-level task-planning agent... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
Practical Considerations for Discrete-Time Implementations o...
收藏 引用
American Control Conference (ACC)
作者: Brunke, Lukas Zhou, Siqi Che, Mingxuan Schoellig, Angela P. Tech Univ Munich Learning Syst & Robot Lab Munich Germany Univ Toronto Toronto ON Canada Munich Inst Robot & Machine Intelligence MIRMI Munich Germany Univ Toronto Inst Robot Toronto ON Canada Vector Inst Artificial Intelligence Toronto ON Canada
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
Is Data All That Matters? The Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain Systems
Is Data All That Matters? The Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Roemer, Ralf Brunke, Lukas Zhou, Siqi Schoellig, Angela P. Tech Univ Munich Sch Computat Informat & Technol Learning Syst & Robot Lab Learn Syslab Org Munich Germany Tech Univ Munich Munich Inst Robot & Machine Intelligence MIRMI Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
Multiplanar Self-Calibration for Mobile Cobot 3D Object Manipulation using 2D Detectors and Depth Estimation
Multiplanar Self-Calibration for Mobile Cobot 3D Object Mani...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Dang, Tuan Nguyen, Khang Huber, Manfred Univ Texas Arlington Dept Comp Sci & Engn Learning & Adapt Robot Lab Arlington TX 76013 USA
Calibration is the first and foremost step in dealing with sensor displacement errors that can appear during extended operation and off-time periods to enable robot object manipulation with precision. In this paper, w... 详细信息
来源: 评论
Vision Foundation Model Enables Generalizable Object Pose Estimation  38
Vision Foundation Model Enables Generalizable Object Pose Es...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Chen, Kai Ma, Yiyao Lin, Xingyu James, Stephen Zhou, Jianshu Liu, Yun-Hui Abbeel, Pieter Dou, Qi The Chinese University of Hong Kong Hong Kong UC Berkeley United States Dyson Robot Learning Lab United Kingdom
Object pose estimation plays a crucial role in robotic manipulation, however, its practical applicability still suffers from limited generalizability. This paper addresses the challenge of generalizable object pose es...
来源: 评论
Rapid learning with phase-change memory-based in-memory computing through learning-to-learn
收藏 引用
NATURE COMMUNICATIONS 2025年 第1期16卷 1-16页
作者: Ortner, Thomas Petschenig, Horst Vasilopoulos, Athanasios Renner, Roland Brglez, Spela Limbacher, Thomas Pinero, Enrique Linares-Barranco, Alejandro Pantazi, Angeliki Legenstein, Robert IBM Res Europe Zurich Ruschlikon Switzerland Graz Univ Technol Inst Machine Learning & Neural Computat Graz Austria Univ Seville SCORE Lab EPS Robot & Technol Comp ETSII Seville Spain
There is a growing demand for low-power, autonomously learning artificial intelligence (AI) systems that can be applied at the edge and rapidly adapt to the specific situation at deployment site. However, current AI m...
来源: 评论
Fine Manipulation Using a Tactile Skin: learning in Simulation and Sim-to-Real Transfer
Fine Manipulation Using a Tactile Skin: Learning in Simulati...
收藏 引用
2024 International Conference on Intelligent robots and Systems
作者: Kasolowsky, Ulf Baeuml, Berthold Tech Univ Munich Learning AI Dextrous Robots Lab Munich Germany German Aerosp Ctr DLR Inst Robot & Mechatron Cologne Germany
We want to enable fine manipulation with a multi-fingered robotic hand by using modern deep reinforcement learning methods. Key for fine manipulation is a spatially resolved tactile sensor. Here, we present a novel mo... 详细信息
来源: 评论
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with Deep Multi-View Stereo  22
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with ...
收藏 引用
22nd IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Xin, Yingye Zuo, Xingxing Lu, Dongyue Leutenegger, Stefan Tech Univ Munich Smart Robot Lab Munich Germany Munich Ctr Machine Learning MCML Munich Germany
We present a real-time visual-inertial dense mapping method capable of performing incremental 3D mesh reconstruction with high quality using only sequential monocular images and inertial measurement unit (IMU) reading... 详细信息
来源: 评论
Emotion Trajectory and Student Performance in Engineering Education: A Preliminary Study  18th
Emotion Trajectory and Student Performance in Engineering Ed...
收藏 引用
18th International Conference on Research Challenges in Information Sciences (RCIS)
作者: Nadaud, Edouard Yaacoub, Antoun Haidar, Siba Le Grand, Benedicte Prevost, Lionel ESIEA Learning Data & Robot LDR Lab Paris France Univ Paris 1 Pantheon Sorbonne Ctr Rech Informat CRI Paris France
In this study, we aim to establish the connection between the emotional trajectory of students during a pedagogical sequence and their performances. The project aims to develop an affective and intelligent tutoring sy... 详细信息
来源: 评论
InsActor: Instruction-driven Physics-based Characters  37
InsActor: Instruction-driven Physics-based Characters
收藏 引用
37th Conference on Neural Information Processing Systems (NeurIPS)
作者: Ren, Jiawei Zhang, Mingyuan Yu, Cunjun Ma, Xiao Pan, Liang Liu, Ziwei Nanyang Technol Univ S Lab Singapore Singapore Natl Univ Singapore Singapore Singapore Dyson Robot Learning Lab London England
Generating animation of physics-based characters with intuitive control has long been a desirable task with numerous applications. However, generating physically simulated animations that reflect high-level human inst... 详细信息
来源: 评论