咨询与建议

限定检索结果

文献类型

  • 457 篇 期刊文献
  • 390 篇 会议

馆藏范围

  • 847 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 753 篇 工学
    • 445 篇 计算机科学与技术...
    • 413 篇 控制科学与工程
    • 285 篇 电气工程
    • 73 篇 软件工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 28 篇 信息与通信工程
    • 19 篇 机械工程
    • 15 篇 土木工程
    • 13 篇 测绘科学与技术
    • 13 篇 交通运输工程
    • 13 篇 生物工程
    • 9 篇 航空宇航科学与技...
    • 8 篇 船舶与海洋工程
    • 6 篇 力学(可授工学、理...
  • 109 篇 理学
    • 38 篇 生物学
    • 31 篇 物理学
    • 27 篇 数学
    • 13 篇 化学
    • 9 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 5 篇 海洋科学
  • 105 篇 医学
    • 67 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 23 篇 特种医学
    • 6 篇 医学技术(可授医学...
  • 66 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 22 篇 教育学
    • 14 篇 教育学
    • 10 篇 心理学(可授教育学...
  • 11 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 59 篇 task analysis
  • 58 篇 robots
  • 55 篇 reinforcement le...
  • 47 篇 training
  • 38 篇 trajectory
  • 36 篇 robot sensing sy...
  • 29 篇 deep learning
  • 27 篇 machine learning
  • 24 篇 object detection
  • 24 篇 robot kinematics
  • 23 篇 planning
  • 22 篇 three-dimensiona...
  • 22 篇 feature extracti...
  • 19 篇 motion planning
  • 19 篇 visualization
  • 18 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 end effectors
  • 16 篇 grasping
  • 15 篇 estimation

机构

  • 50 篇 univ stuttgart m...
  • 17 篇 imperial coll lo...
  • 15 篇 the robot learni...
  • 15 篇 dyson robot lear...
  • 13 篇 delft univ techn...
  • 13 篇 natl engn lab de...
  • 12 篇 fraunhofer iosb ...
  • 11 篇 max planck inst ...
  • 10 篇 carnegie mellon ...
  • 10 篇 chinese acad sci...
  • 10 篇 univ sci & techn...
  • 10 篇 univ bern artorg...
  • 10 篇 chinese acad sci...
  • 9 篇 univ massachuset...
  • 9 篇 dyson robot lear...
  • 9 篇 tech univ munich...
  • 8 篇 univ chinese aca...
  • 8 篇 esiea learning d...
  • 8 篇 xi an jiao tong ...
  • 8 篇 max planck inst ...

作者

  • 67 篇 toussaint marc
  • 55 篇 johns edward
  • 30 篇 kragic danica
  • 23 篇 zhou s. kevin
  • 22 篇 james stephen
  • 22 篇 peters jan
  • 18 篇 marchal-crespo l...
  • 16 篇 rosasco lorenzo
  • 15 篇 schoellig angela...
  • 13 篇 driess danny
  • 13 篇 liu yong
  • 12 篇 di palo norman
  • 12 篇 billard aude
  • 12 篇 folkesson john
  • 12 篇 ogren petter
  • 11 篇 mainprice jim
  • 11 篇 schaal stefan
  • 11 篇 seo younggyo
  • 10 篇 beyerer juergen
  • 10 篇 specker andreas

语言

  • 830 篇 英文
  • 16 篇 其他
检索条件"机构=The Robot Learning Lab"
847 条 记 录,以下是71-80 订阅
排序:
Demonstrate Once, Imitate Immediately (DOME): learning Visual Servoing for One-Shot Imitation learning
Demonstrate Once, Imitate Immediately (DOME): Learning Visua...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Valassakis, Eugene Papagiannis, Georgios Di Palo, Norman Johns, Edward Imperial Coll London Robot Learning Lab London England
We present DOME, a novel method for one-shot imitation learning, where a task can be learned from just a single demonstration and then be deployed immediately, without any further data collection or training. DOME doe... 详细信息
来源: 评论
Crossing the Gap: A Deep Dive into Zero-Shot Sim-to-Real Transfer for Dynamics
Crossing the Gap: A Deep Dive into Zero-Shot Sim-to-Real Tra...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Valassakis, Eugene Ding, Zihan Johns, Edward Imperial Coll London Robot Learning Lab London England
Zero-shot sim-to-real transfer of tasks with complex dynamics is a highly challenging and unsolved problem. A number of solutions have been proposed in recent years, but we have found that many works do not present a ... 详细信息
来源: 评论
Reactive Phase and Task Space Adaptation for Robust Motion Execution
Reactive Phase and Task Space Adaptation for Robust Motion E...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Englert, Peter Toussaint, Marc Univ Stuttgart Machine Learning & Robot Lab Stuttgart Germany
An essential aspect for making robots succeed in real- world environments is to give them the ability to robustly perform motions in continuously changing situations. Classical motion planning methods usually create p... 详细信息
来源: 评论
Hybrid ICP
Hybrid ICP
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Dreczkowski, Kamil Johns, Edward Imperial Coll London Robot Learning Lab London England
ICP algorithms typically involve a fixed choice of data association method and a fixed choice of error metric. In this paper, we propose Hybrid ICP, a novel and flexible ICP variant which dynamically optimises both th... 详细信息
来源: 评论
learning Multi-Stage Tasks with One Demonstration via Self-Replay  5
Learning Multi-Stage Tasks with One Demonstration via Self-R...
收藏 引用
5th Conference on robot learning (CoRL)
作者: Di Palo, Norman Jonhs, Edward Imperial Coll London Robot Learning Lab London England
In this work, we introduce a novel method to learn everyday-like multi-stage tasks from a single human demonstration, without requiring any prior object knowledge. Inspired by the recent Coarse-to-Fine Imitation Learn... 详细信息
来源: 评论
Kinematic Morphing Networks for Manipulation Skill Transfer
Kinematic Morphing Networks for Manipulation Skill Transfer
收藏 引用
25th IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Englert, Peter Toussaint, Marc Univ Stuttgart Machine Learning & Robot Lab Stuttgart Germany
The transfer of a robot skill between different geometric environments is non-trivial since a wide variety of environments exists, sensor observations as well as robot motions are high-dimensional, and the environment... 详细信息
来源: 评论
Active learning with Query Paths for Tactile Object Shape Exploration
Active Learning with Query Paths for Tactile Object Shape Ex...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Driess, Danny Englert, Peter Toussaint, Marc Univ Stuttgart Machine Learning & Robot Lab Stuttgart Germany
In the present work, we propose an active learning framework based on optimal query paths to efficiently address the problem of tactile object shape exploration. Most previous approaches perform active touch probing a... 详细信息
来源: 评论
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark  8
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark
收藏 引用
8th Conference on robot learning, CoRL 2024
作者: Chernyadev, Nikita Backshall, Nicholas Ma, Xiao Lu, Yunfan Seo, Younggyo James, Stephen Dyson Robot Learning Lab United Kingdom
We introduce BiGym, a new benchmark and learning environment for mobile bi-manual demo-driven robotic manipulation. BiGym features 40 diverse tasks set in home environments, ranging from simple target reaching to comp... 详细信息
来源: 评论
One-Shot Imitation learning: A Pose Estimation Perspective  7
One-Shot Imitation Learning: A Pose Estimation Perspective
收藏 引用
7th Conference on robot learning (CoRL)
作者: Vitiello, Pietro Dreczkowski, Kamil Johns, Edward Imperial Coll London Robot Learning Lab London England
In this paper, we study imitation learning under the challenging setting of: (1) only a single demonstration, (2) no further data collection, and (3) no prior task or object knowledge. We show how, with these constrai... 详细信息
来源: 评论
Continuous Control with Coarse-to-fine Reinforcement learning  8
Continuous Control with Coarse-to-fine Reinforcement Learnin...
收藏 引用
8th Conference on robot learning, CoRL 2024
作者: Seo, Younggyo Uruç, Jafar James, Stephen Dyson Robot Learning Lab United Kingdom
Despite recent advances in improving the sample-efficiency of reinforcement learning (RL) algorithms, designing an RL algorithm that can be practically deployed in real-world environments remains a challenge. In this ... 详细信息
来源: 评论