咨询与建议

限定检索结果

文献类型

  • 457 篇 期刊文献
  • 390 篇 会议

馆藏范围

  • 847 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 753 篇 工学
    • 445 篇 计算机科学与技术...
    • 413 篇 控制科学与工程
    • 285 篇 电气工程
    • 73 篇 软件工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 28 篇 信息与通信工程
    • 19 篇 机械工程
    • 15 篇 土木工程
    • 13 篇 测绘科学与技术
    • 13 篇 交通运输工程
    • 13 篇 生物工程
    • 9 篇 航空宇航科学与技...
    • 8 篇 船舶与海洋工程
    • 6 篇 力学(可授工学、理...
  • 109 篇 理学
    • 38 篇 生物学
    • 31 篇 物理学
    • 27 篇 数学
    • 13 篇 化学
    • 9 篇 统计学(可授理学、...
    • 6 篇 地球物理学
    • 5 篇 海洋科学
  • 105 篇 医学
    • 67 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 23 篇 特种医学
    • 6 篇 医学技术(可授医学...
  • 66 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 22 篇 教育学
    • 14 篇 教育学
    • 10 篇 心理学(可授教育学...
  • 11 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 59 篇 task analysis
  • 58 篇 robots
  • 55 篇 reinforcement le...
  • 47 篇 training
  • 38 篇 trajectory
  • 36 篇 robot sensing sy...
  • 29 篇 deep learning
  • 27 篇 machine learning
  • 24 篇 object detection
  • 24 篇 robot kinematics
  • 23 篇 planning
  • 22 篇 three-dimensiona...
  • 22 篇 feature extracti...
  • 19 篇 motion planning
  • 19 篇 visualization
  • 18 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 end effectors
  • 16 篇 grasping
  • 15 篇 estimation

机构

  • 50 篇 univ stuttgart m...
  • 17 篇 imperial coll lo...
  • 15 篇 the robot learni...
  • 15 篇 dyson robot lear...
  • 13 篇 delft univ techn...
  • 13 篇 natl engn lab de...
  • 12 篇 fraunhofer iosb ...
  • 11 篇 max planck inst ...
  • 10 篇 carnegie mellon ...
  • 10 篇 chinese acad sci...
  • 10 篇 univ sci & techn...
  • 10 篇 univ bern artorg...
  • 10 篇 chinese acad sci...
  • 9 篇 univ massachuset...
  • 9 篇 dyson robot lear...
  • 9 篇 tech univ munich...
  • 8 篇 univ chinese aca...
  • 8 篇 esiea learning d...
  • 8 篇 xi an jiao tong ...
  • 8 篇 max planck inst ...

作者

  • 67 篇 toussaint marc
  • 55 篇 johns edward
  • 30 篇 kragic danica
  • 23 篇 zhou s. kevin
  • 22 篇 james stephen
  • 22 篇 peters jan
  • 18 篇 marchal-crespo l...
  • 16 篇 rosasco lorenzo
  • 15 篇 schoellig angela...
  • 13 篇 driess danny
  • 13 篇 liu yong
  • 12 篇 di palo norman
  • 12 篇 billard aude
  • 12 篇 folkesson john
  • 12 篇 ogren petter
  • 11 篇 mainprice jim
  • 11 篇 schaal stefan
  • 11 篇 seo younggyo
  • 10 篇 beyerer juergen
  • 10 篇 specker andreas

语言

  • 830 篇 英文
  • 16 篇 其他
检索条件"机构=The Robot Learning Lab"
847 条 记 录,以下是81-90 订阅
排序:
Generative Image as Action Models  8
Generative Image as Action Models
收藏 引用
8th Conference on robot learning, CoRL 2024
作者: Shridhar, Mohit Lo, Yat Long James, Stephen Dyson Robot Learning Lab United Kingdom
Image-generation diffusion models have been fine-tuned to unlock new capabilities such as image-editing and novel view synthesis. Can we similarly unlock image-generation models for visuomotor control? We present GENI... 详细信息
来源: 评论
Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2022年 第2期7卷 5512-5519页
作者: Liu, Xu Nardari, Guilherme, V Ojeda, Fernando Cladera Tao, Yuezhan Zhou, Alex Donnelly, Thomas Qu, Chao Chen, Steven W. Romero, Roseli A. F. Taylor, Camillo J. Kumar, Vijay Univ Penn GRASP Lab Philadelphia PA 19104 USA Univ Sao Paulo Robot Learning Lab Sao Paulo SP Brazil
Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the ac... 详细信息
来源: 评论
MoGaze: A Dataset of Full-Body Motions that Includes Workspace Geometry and Eye-Gaze
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2021年 第2期6卷 367-373页
作者: Kratzer, Philipp Bihlmaier, Simon Midlagajni, Niteesh Balachandra Prakash, Rohit Toussaint, Marc Mainprice, Jim Univ Stuttgart Machine Learning & Robot Lab Stuttgart Germany Univ Stuttgart Humans Robots Mot Res Grp D-70174 Stuttgart Germany TU Learning & Intelligent Syst Lab Berlin Germany
As robots become more present in open human environments, it will become crucial for robotic systems to understand and predict human motion. Such capabilities depend heavily on the quality and availability of motion c... 详细信息
来源: 评论
Sim-to-Real Transfer for Optical Tactile Sensing
Sim-to-Real Transfer for Optical Tactile Sensing
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Ding, Zihan Lepora, Nathan F. Johns, Edward Imperial Coll London Robot Learning Lab London England Univ Bristol Bristol Robot Lab Bristol Avon England
Deep learning and reinforcement learning methods have been shown to enable learning of flexible and complex robot controllers. However, the reliance on large amounts of training data often requires data collection to ... 详细信息
来源: 评论
Control-Tree Optimization: an approach to MPC under discrete Partial Observability
Control-Tree Optimization: an approach to MPC under discrete...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Phiquepal, Camille Toussaint, Marc Univ Stuttgart Machine Learning & Robot Lab Stuttgart Germany TU Berlin Learning & Intelligent Syst Lab Berlin Germany
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a ... 详细信息
来源: 评论
Path-Tree Optimization in Discrete Partially Observable Environments Using Rapidly-Exploring Belief-Space Graphs
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2022年 第4期7卷 10160-10167页
作者: Phiquepal, Camille Orthey, Andreas Viennot, Nicolas Toussaint, Marc Univ Stuttgart Machine Learning & Robot Lab D-80807 Munich Germany TU Berlin Learning & Intelligent Syst Lab D-10587 Berlin Germany Columbia Univ Software Syst Lab New York NY 10027 USA
robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer t... 详细信息
来源: 评论
DALL-E-Bot: Introducing Web-Scale Diffusion Models to robotics
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2023年 第7期8卷 3956-3963页
作者: Kapelyukh, Ivan Vosylius, Vitalis Johns, Edward Imperial Coll London Robot Learning Lab London SW7 2AZ England Imperial Coll London Dyson Robot Lab London SW7 2AZ England
We introduce the first work to explore web-scale diffusion models for robotics. DALL-E-Bot enables a robot to rearrange objects in a scene, by first inferring a text description of those objects, then generating an im... 详细信息
来源: 评论
learning Communication for Cooperation in Dynamic Agent-Number Environment
收藏 引用
IEEE-ASME TRANSACTIONS ON MECHATRONICS 2021年 第4期26卷 1846-1857页
作者: Liu, Weiwei Liu, Shanqi Cao, Junjie Wang, Qi Lang, Xiaolei Liu, Yong Zhejiang Univ Coll Control Sci & Engn Adv Percept Robot & Intelligent Learning Lab Hangzhou 310027 Peoples R China
The number of agents in many multiagent systems in the real world, such as storage robots and drone cluster systems, continually changes. Still, most current multiagent reinforcement learning (RL) algorithms are limit... 详细信息
来源: 评论
Online Motion Planning Over Multiple Homotopy Classes with Gaussian Process Inference
Online Motion Planning Over Multiple Homotopy Classes with G...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Kolur, Keshav Chintalapudi, Sahit Boots, Byron Mukadam, Mustafa Georgia Inst Technol Robot Learning Lab Atlanta GA 30332 USA
Efficient planning in dynamic and uncertain environments is a fundamental challenge in robotics. In the context of trajectory optimization, the feasibility of paths can change as the environment evolves. Therefore, it... 详细信息
来源: 评论
Efficient Motion Planning Based on Kinodynamic Model for Quadruped robots Following Persons in Confined Spaces
收藏 引用
IEEE-ASME TRANSACTIONS ON MECHATRONICS 2021年 第4期26卷 1997-2006页
作者: Zhang, Zhen Yan, Jiaqing Kong, Xin Zhai, Guangyao Liu, Yong Zhejiang Univ Coll Control Sci & Engn Adv Percept Robot & Intelligent Learning Lab Hangzhou 310027 Peoples R China
Quadruped robots have superior terrain adaptability and flexible movement capabilities than traditional robots. In this article, we innovatively apply it in person-following tasks, and propose an efficient motion plan... 详细信息
来源: 评论