Facial expressions can provide a better understanding of people's mental status and attitudes towards specific things. However, facial occlusion in real world is an unfavorable phenomenon that greatly affects the ...
详细信息
The Internet of Things (IoT) has revolutionized our lives, but it has also introduced significant security and privacy challenges. The vast amount of data collected by these devices, often containing sensitive informa...
详细信息
Blockchain technology has the characteristics of non-tampering and forgery, traceability, and so on, which have good application advantages for the storage of multimedia data. So we propose a novel method using matrix...
详细信息
Content analysis of pilot speech is a key tool for improving flight safety as it allows to identify potential problems in communication between pilots, dispatchers and crew. The development of efficient algorithms for...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
We theoretically investigate chaotic dynamics in an optomechanical system composed of a whispering-gallery-mode(WGM)microresonator and a *** find that tuning the optical phase using a phase shifter and modifying the c...
详细信息
We theoretically investigate chaotic dynamics in an optomechanical system composed of a whispering-gallery-mode(WGM)microresonator and a *** find that tuning the optical phase using a phase shifter and modifying the coupling strength via a unidirectional waveguide(IWG)can induce chaotic *** underlying reason for this phenomenon is that adjusting the phase and coupling strength via the phase shifter and IWG bring the system close to an exceptional point(EP),where field localization dynamically enhances the optomechanical nonlinearity,leading to the generation of chaotic *** addition,due to the sensitivity of chaos to phase in the vicinity of the EP,we propose a theoretical scheme to measure the optical phase perturbations using *** work may offer an alternative approach to chaos generation with current experimental technology and provide theoretical guidance for optical signal processing and chaotic secure communication.
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimed...
详细信息
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimedia revolution. Therefore, digital image watermarking offers an alternative way out for image authentication. Currently, watermarking methods are crucial for safeguarding digital images. Several traditional watermarking approaches have been developed to protect images using spatial domains and transformations. Watermarking techniques that are more traditional are less resistant to repeated attacks. Deep learning-based watermarking has recently gained traction, greatly improving the safety of visual images in a variety of common applications. This study presents a robust and secure digital watermarking method for multimedia content protection and authentication. The watermark image is first transformed using the hybrid wavelet transform, and then it is encrypted using a chaos encryption algorithm. The cover image is simultaneously subjected to neighborhood-based feature extraction. Leveraging these extracted features, a novel Adaptive Gannet Optimization algorithm (AGOA) is employed to determine the optimal embedding location. Subsequently, the watermarked image is seamlessly integrated and extracted using the hybrid Generative adversarial network-based long short-term memory (GAN-LSTM) approach within the identified optimal region. Decryption and Inverse transformation are then used to get the original watermark image. Several previous methods, such as DNN, Deep-ANN, and Deep-CNN, are used to evaluate the performance of the proposed method. This technique improves multimedia content protection and authentication by guaranteeing strong and secure watermarking. The proposed method for digital image watermarking produced a peak signal-to-noise ratio of 46.412 and a mean square error of 24.512. Therefore, the proposed method performs well in digital image wa
Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising *** the success of existing blockchain architectures like Bi...
详细信息
Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising *** the success of existing blockchain architectures like Bitcoin,Ethereum,Filecoin,Hyperledger Fabric,BCOS,and BCS,current blockchain applications are still quite *** struggles with scenarios requiring high-speed transactions(e.g.,online markets)or large data storage(e.g.,video services)due to consensus efficiency *** restrictions pose risks to investors in blockchain-based economic systems(e.g.,DeFi),deterring current and potential *** protection challenges make it difficult to involve sensitive data in blockchain applications.
Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech *** recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applicati...
详细信息
Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech *** recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applications such as hearing aids,Automatic Speech Recognition(ASR),and mobile speech communication *** of the Speech Enhancement research work has been carried out for English,Chinese,and other European *** a few research works involve speech enhancement in Indian regional *** this paper,we propose a two-fold architecture to perform speech enhancement for Tamil speech signal based on convolutional recurrent neural network(CRN)that addresses the speech enhancement in a real-time single channel or track of sound created by the *** thefirst stage mask based long short-term mem-ory(LSTM)is used for noise suppression along with loss function and in the sec-ond stage,Convolutional Encoder-Decoder(CED)is used for speech *** proposed model is evaluated on various speaker and noisy environments like Babble noise,car noise,and white Gaussian *** proposed CRN model improves speech quality by 0.1 points when compared with the LSTM base model and also CRN requires fewer parameters for *** performance of the pro-posed model is outstanding even in low Signal to Noise Ratio(SNR).
Integrated sensing and communication (ISAC) is a promising solution to mitigate the increasing congestion of the wireless spectrum. In this paper, we investigate the short packet communication regime within an ISAC sy...
详细信息
暂无评论