Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and ...
详细信息
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and there is a relative lack of research on mass gathering *** believe real-time detection and monitoring of mass gathering behaviors are essential formigrating potential security risks and ***,it is imperative to develop a method capable of accurately identifying and localizing mass gatherings before disasters occur,enabling prompt and effective *** address this problem,we propose an innovative Event-Driven Attention Network(EDAN),which achieves image-text matching in the scenario of mass gathering events with good results for the first *** image-text retrieval methods based on global alignment are difficult to capture the local details within complex scenes,limiting retrieval *** local alignment-based methods aremore effective at extracting detailed features,they frequently process raw textual features directly,which often contain ambiguities and redundant information that can diminish retrieval efficiency and degrade model *** overcome these challenges,EDAN introduces an Event-Driven AttentionModule that adaptively focuses attention on image regions or textual words relevant to the event *** calculating the semantic distance between event labels and textual content,this module effectively significantly reduces computational complexity and enhances retrieval *** validate the effectiveness of EDAN,we construct a dedicated multimodal dataset tailored for the analysis of mass gathering events,providing a reliable foundation for subsequent *** conduct comparative experiments with other methods on our dataset,the experimental results demonstrate the effectiveness of *** the image-to-text retrieval task,EDAN achieved the best performance on the R@5 metric,w
In this letter, we depart from the widely-used gradient descent-based hierarchical federated learning (FL) algorithms to develop a novel hierarchical FL framework based on the alternating direction method of multiplie...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the desig...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the design of sequential scanning beams for target detection with the required sensing resolution has not been tackled in the *** bridge this gap, this paper introduces a resolution-aware beam scanning design. In particular, the transmit information beamformer, the covariance matrix of the dedicated radar signal, and the receive beamformer are jointly optimized to maximize the average sum rate of the system while satisfying the sensing resolution and detection probability requirements.A block coordinate descent(BCD)-based optimization framework is developed to address the non-convex design problem. By exploiting successive convex approximation(SCA), S-procedure, and semidefinite relaxation(SDR), the proposed algorithm is guaranteed to converge to a stationary solution with polynomial time complexity. Simulation results show that the proposed design can efficiently handle the stringent detection requirement and outperform existing antenna-activation-based methods in the literature by exploiting the full degrees of freedom(DoFs) brought by all antennas.
Autism spectrum disease (ASD) is a neuro developmental illness that is both complicated and degenerative. A majority of known approaches use autism detection observation schedule (ADOS), pattern recognition, etc. to d...
详细信息
Expanding internet-connected services has increased cyberattacks,many of which have grave and disastrous *** Intrusion Detection System(IDS)plays an essential role in network security since it helps to protect the net...
详细信息
Expanding internet-connected services has increased cyberattacks,many of which have grave and disastrous *** Intrusion Detection System(IDS)plays an essential role in network security since it helps to protect the network from vulnerabilities and *** extensive research was reported in IDS,detecting novel intrusions with optimal features and reducing false alarm rates are still ***,we developed a novel fusion-based feature importance method to reduce the high dimensional feature space,which helps to identify attacks accurately with less false alarm ***,to improve training data quality,various preprocessing techniques are *** Adaptive Synthetic oversampling technique generates synthetic samples for minority *** the proposed fusion-based feature importance,we use different approaches from the filter,wrapper,and embedded methods like mutual information,random forest importance,permutation importance,Shapley Additive exPlanations(SHAP)-based feature importance,and statistical feature importance methods like the difference of mean and median and standard deviation to rank each feature according to its *** by simple plurality voting,the most optimal features are *** the optimal features are fed to various models like Extra Tree(ET),Logistic Regression(LR),Support vector Machine(SVM),Decision Tree(DT),and Extreme Gradient Boosting Machine(XGBM).Then the hyperparameters of classification models are tuned with Halving Random Search cross-validation to enhance the *** experiments were carried out on the original imbalanced data and balanced *** outcomes demonstrate that the balanced data scenario knocked out the imbalanced ***,the experimental analysis proved that our proposed fusionbased feature importance performed well with XGBM giving an accuracy of 99.86%,99.68%,and 92.4%,with 9,7 and 8 features by training time of 1.5,4.5 and 5.5 s on Network Security Laborat
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network infrastructures are not fixed. The most common problems faced by MANET are energy efficiency, high energy consumption, low network lifetime as well as high traffic overhead which create an impact on overall network topology. Hence, it is necessary to provide an energy-effective CH election to take steps against such issues. Therefore, this paper proposes a novel model to enhance the network lifetime and energy efficiency by performing a routing strategy in MANET. In this paper, an optimal CH is selected by proposing a novel Fuzzy Marine White Shark optimization (FMWSO) algorithm which is obtained by integrating fuzzy operation with two optimization algorithms namely the marine predator algorithm and white shark optimizer. The proposed approach comprises three diverse stages namely Generation of data, Cluster Generation and CH selection. A novel FMWSO algorithm is proposed in such a way to determine the CH selection in MANET thereby enhancing the network topology, network lifetime and minimizing the overhead rate, and energy consumption. Finally, the performance of the proposed FMWSO approach is compared with various other existing techniques to determine the effectiveness of the system. The proposed FMWSO approach consumes minimum energy of 0.62 mJ which is lower than other approaches.
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection m...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection model using a Deep Convolutional Neural Network(D-CNN).The proposed Faster R-CNN(Faster Region-Based CNN)models are trained with Morphological *** proposed Faster R-CNN model is trained using the augmented *** overcoming the Imbalanced Data problem,data augmentation techniques are *** Faster R-CNN performance was com-pared with existing transfer learning *** results show that the Faster R-CNN performance was significant than other *** number of images in each class is *** example,the Neutrophil(segmented)class consists of 8,486 images,and Lymphocyte(atypical)class consists of eleven *** dataset is used to train the CNN for single-cell morphology classifi*** proposed work implies the high-class performance server called Nvidia Tesla V100 GPU(Graphics processing unit).
Internet of Medical Things (IoMT) is a technology that encompasses medical devices, wearable sensors, and applications connected to the Internet. In road accidents, it plays a crucial role in enhancing emergency respo...
详细信息
Modernization and intense industrialization have led to a substantial improvement in people’s quality of life. However, the aspiration for achieving an improved quality of life results in environmental contamination....
详细信息
We introduce and study reconfiguration problems for (internally) vertex-disjoint shortest paths: Given two tuples of internally vertex-disjoint shortest paths for fixed terminal pairs in an unweighted graph, we are as...
详细信息
暂无评论