Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
Diabetes is a widespread chronic condition that impacts people all over the globe and requires a clear and timely diagnosis. Untreated diabetes leads to retinopathy, nephropathy, and damage to the nervous system. In t...
详细信息
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual ***,the current state of this technology is still in its infancy and largely reliant on liquid cr...
详细信息
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual ***,the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural ***,we present a multicolor nanofilter consisting of multilayered‘active’plasmonic nanocomposites,wherein metallic nanoparticles are embedded within a conductive polymer *** nanocomposites are fabricated with a total thickness below 100 nm using a‘lithography-free’method at the wafer level,and they inherently exhibit three prominent optical modes,accompanying scattering phenomena that produce distinct dichroic reflection and transmission ***,a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed,encompassing the entire visible ***,this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum(3250 K-6250 K).This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun’s elevation and prevailing weather conditions.
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
Task scheduling, which is important in cloud computing, is one of the most challenging issues in this area. Hence, an efficient and reliable task scheduling approach is needed to produce more efficient resource employ...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in...
详细信息
The proliferation of cooking videos on the internet these days necessitates the conversion of these lengthy video contents into concise text recipes. Many online platforms now have a large number of cooking videos, in which, there is a challenge for viewers to extract comprehensive recipes from lengthy visual content. Effective summary is necessary in order to translate the abundance of culinary knowledge found in videos into text recipes that are easy to read and follow. This will make the cooking process easier for individuals who are searching for precise step by step cooking instructions. Such a system satisfies the needs of a broad spectrum of learners while also improving accessibility and user simplicity. As there is a growing need for easy-to-follow recipes made from cooking videos, researchers are looking on the process of automated summarization using advanced techniques. One such approach is presented in our work, which combines simple image-based models, audio processing, and GPT-based models to create a system that makes it easier to turn long culinary videos into in-depth recipe texts. A systematic workflow is adopted in order to achieve the objective. Initially, Focus is given for frame summary generation which employs a combination of two convolutional neural networks and a GPT-based model. A pre-trained CNN model called Inception-V3 is fine-tuned with food image dataset for dish recognition and another custom-made CNN is built with ingredient images for ingredient recognition. Then a GPT based model is used to combine the results produced by the two CNN models which will give us the frame summary in the desired format. Subsequently, Audio summary generation is tackled by performing Speech-to-text functionality in python. A GPT-based model is then used to generate a summary of the resulting textual representation of audio in our desired format. Finally, to refine the summaries obtained from visual and auditory content, Another GPT-based model is used
Lizards use the synergy between their feet and tail to climb on slopes and vertical *** use their soft adhesive feet with millions of small hairs to increase their contact area with the terrain surface and press their...
详细信息
Lizards use the synergy between their feet and tail to climb on slopes and vertical *** use their soft adhesive feet with millions of small hairs to increase their contact area with the terrain surface and press their tails against the terrain to actively maintain stability during *** by this,we propose a bio-inspired climbing robot based on a new approach wherein the synergy between soft feet and an active tail with a soft adhesive tip allows the robot to climb stably on even and uneven terrains at different slope *** evaluate and compare the climbing performance of the robot on three different terrains(hard,soft,and fluffy)at different slope *** robot configurations are employed,including those with standard hard feet and soft feet in combination with an active tail-with and without a soft *** experimental results show that the robot having soft feet and a tail with the soft tip achieves the best climbing performance on all terrains,with maximum climbing slopes of 40°,45°,and 50°on fluffy,soft,and hard terrains,*** payload capacity depends on the type of terrain and the inclination ***,our robot performs multi-terrain transitions(climbing from horizontal to sloped terrains)on three different terrains of a *** approach can allow a climbing robot to walk and climb on different terrains,extending the operational range of the robot to areas with complex terrains and slopes,e.g.,in inspection,exploration,and construction.
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
Coconut tree diseases are a serious risk to agricultural yield, particularly in developing countries where conventional farming practices restrict early diagnosis and intervention. Current disease identification metho...
详细信息
暂无评论