咨询与建议

限定检索结果

文献类型

  • 826 篇 会议
  • 292 篇 期刊文献

馆藏范围

  • 1,118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 710 篇 工学
    • 553 篇 计算机科学与技术...
    • 411 篇 软件工程
    • 135 篇 信息与通信工程
    • 81 篇 控制科学与工程
    • 75 篇 电子科学与技术(可...
    • 64 篇 生物工程
    • 51 篇 机械工程
    • 45 篇 电气工程
    • 26 篇 动力工程及工程热...
    • 24 篇 仪器科学与技术
    • 24 篇 化学工程与技术
    • 15 篇 材料科学与工程(可...
    • 15 篇 网络空间安全
    • 14 篇 土木工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 交通运输工程
    • 12 篇 农业工程
    • 12 篇 环境科学与工程(可...
  • 288 篇 理学
    • 179 篇 数学
    • 67 篇 生物学
    • 51 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 36 篇 系统科学
    • 25 篇 化学
  • 183 篇 管理学
    • 126 篇 管理科学与工程(可...
    • 60 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 19 篇 法学
    • 16 篇 社会学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 13 篇 农学
  • 11 篇 教育学
    • 11 篇 教育学
  • 8 篇 医学
  • 4 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 44 篇 computational mo...
  • 31 篇 concurrent compu...
  • 31 篇 training
  • 30 篇 laboratories
  • 30 篇 algorithm design...
  • 28 篇 computer archite...
  • 28 篇 benchmark testin...
  • 28 篇 feature extracti...
  • 28 篇 kernel
  • 27 篇 semantics
  • 27 篇 distributed proc...
  • 25 篇 graphics process...
  • 25 篇 servers
  • 25 篇 hardware
  • 23 篇 parallel process...
  • 23 篇 fault tolerance
  • 23 篇 cloud computing
  • 21 篇 task analysis
  • 21 篇 throughput
  • 21 篇 distributed comp...

机构

  • 169 篇 national laborat...
  • 134 篇 science and tech...
  • 104 篇 college of compu...
  • 81 篇 national laborat...
  • 38 篇 national laborat...
  • 36 篇 science and tech...
  • 35 篇 school of comput...
  • 34 篇 national laborat...
  • 29 篇 national key lab...
  • 22 篇 science and tech...
  • 22 篇 national key lab...
  • 18 篇 national laborat...
  • 16 篇 science and tech...
  • 16 篇 national laborat...
  • 15 篇 school of comput...
  • 14 篇 national laborat...
  • 13 篇 national key lab...
  • 13 篇 laboratory of di...
  • 12 篇 national key lab...
  • 11 篇 national univers...

作者

  • 43 篇 yong dou
  • 41 篇 wang huaimin
  • 40 篇 dou yong
  • 36 篇 dongsheng li
  • 35 篇 liu jie
  • 35 篇 huaimin wang
  • 31 篇 jie liu
  • 30 篇 peng yuxing
  • 29 篇 yuxing peng
  • 29 篇 li dongsheng
  • 29 篇 yijie wang
  • 27 篇 xiaodong wang
  • 26 篇 wang yijie
  • 24 篇 yin gang
  • 23 篇 wang ji
  • 22 篇 zhigang luo
  • 21 篇 xingming zhou
  • 20 篇 gang yin
  • 20 篇 li kuan-ching
  • 19 篇 shaohe lv

语言

  • 1,050 篇 英文
  • 59 篇 中文
  • 9 篇 其他
检索条件"机构=The Science and Technology on Parallel and Distributed Processing Laboratory"
1118 条 记 录,以下是371-380 订阅
排序:
Determinants of pull-based development in the context of continuous integration
收藏 引用
science China(Information sciences) 2016年 第8期59卷 53-66页
作者: Yue YU Gang YIN Tao WANG Cheng YANG Huaimin WANG College of Computer National University of Defense Technology National Laboratory for Parallel and Distributed Processing
The pull-based development model, widely used in distributed software teams on open source communities, can efficiently gather the wisdom from crowds. Instead of sharing access to a central repository,contributors cre... 详细信息
来源: 评论
A systematic review of structured sparse learning
收藏 引用
Frontiers of Information technology & Electronic Engineering 2017年 第4期18卷 445-463页
作者: Lin-bo QIAO Bo-feng ZHANG Jin-shu SU Xi-cheng LU College of Computer National University of Defense Technology Changsha 410073 China National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha 410073 China
High-dimensional data arising from diverse scientific research fields and industrial development have led to increased interest in sparse learning due to model parsimony and computational advantage. With the assumptio... 详细信息
来源: 评论
Nominal Data Similarity: A Hierarchical Measure
Nominal Data Similarity: A Hierarchical Measure
收藏 引用
International Joint Conference on Neural Networks
作者: Hao Yu Zhaoning Zhang Zijie Zhu Wang Xiong Gen Zhang Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Meteorology and Oceanology National University of Defense Technology Changsha China College of Computer National University of Defense Technology Changsha China
Similarity of nominal data plays fundamental roles in numerous fields of both machine learning and data mining. Unlike the similarity of numerical data, that of nominal data is much more difficult to describe, and few... 详细信息
来源: 评论
Predicting potential gene ontology from cellular response data  17
Predicting potential gene ontology from cellular response da...
收藏 引用
5th International Conference on Bioinformatics and Computational Biology, ICBCB 2017
作者: Hong, Hao Yin, Xiaoyao Li, Fei Guan, Naiyang Bo, Xiaochen Luo, Zhigang Department of Chemistry and Biology National University of Defense Technology Changsha China Science and Technology on Parallel and Distributed Processing Laboratory National University of Defense Technology Changsha China Department of Biotechnology Beijing Institute of Radiation Medicine Beijing China
Ontologies have proven to be useful for capturing and organizing knowledge as a hierarchical set of terms and their relationships. However, curating gene ontology data by hand requires specialized knowledge of certain... 详细信息
来源: 评论
Asynchronous Bundle Method for Large-Scale Regularized Risk Minimization
Asynchronous Bundle Method for Large-Scale Regularized Risk ...
收藏 引用
International Joint Conference on Neural Networks
作者: Menglong Lu Dawei Feng Linbo Qiao Dawen Ding Dongsheng Li Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Computer National University of Defense Technology Changsha China CMC AS2 South CSC Asiainfo Nanchang China
Bundle method for regularized risk minimization (BMRM) is a variant of Cutting Plane Method (CPM). It performs efficiently in solving a convex minimization problem, which is a core part in a plethora of machine learni... 详细信息
来源: 评论
Design of an Indoor Exploration and Multi-Objective Navigation System
Design of an Indoor Exploration and Multi-Objective Navigati...
收藏 引用
Chinese Control Conference (CCC)
作者: Guoxian Zheng Lei Zhang Huaxi Yulin Zhang Bo Ding State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China MIS Universite de Picardie Jules Verne Amiens France National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha China
In this paper, we propose an indoor robot autonomous navigation system. The robot firstly explores in an unknown environment, and then navigates autonomously by using the explored map. The robot is equipped a 2D laser... 详细信息
来源: 评论
Exploiting contention and congestion aware switch allocation in network-on-chips  17
Exploiting contention and congestion aware switch allocation...
收藏 引用
50th ACM Turing Conference - China, ACM TUR-C 2017
作者: Li, Cunlu Dongy, Dezun Liao, Xiangke National Laboratory for Parallel and Distributed Processing Collaborative Innovation Center of High Performance Computing College of Computer National University of Defense Technology Changsha Hunan410073 China
Network-on-chip system plays an important role to improve the performance of chip multiprocessor systems. As the complexity of the network increases, congestion problem has become the major performance bottleneck and ... 详细信息
来源: 评论
Collaborative deep learning across multiple data centers
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Kele Mi, Haibo Feng, Dawei Wang, Huaimin Chen, Chuan Zheng, Zibin Lan, Xu National Key Laboratory of Parallel and Distributed Processing Changsha China College of Computer National University of Defense Technology Changsha China School of Data and Computer Science Sun Yat-Sen University Guangzhou China Queen Mary University of London London United Kingdom
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practi... 详细信息
来源: 评论
Loss rank mining: A general hard example mining method for real-time Detectors
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Hao Zhang, Zhaoning Qin, Zheng Wu, Hao Li, Dongsheng Zhao, Jun Lu, Xicheng Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Electronic and Engineering National University of Defense Technology Changsha China College of Meteorology and Oceanology National University of Defense Technology Changsha China
Modern object detectors usually suffer from low accuracy issues, as foregrounds always drown in tons of backgrounds and become hard examples during training. Compared with those proposal-based ones, real-time detector... 详细信息
来源: 评论
Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
Loss Rank Mining: A General Hard Example Mining Method for R...
收藏 引用
International Joint Conference on Neural Networks
作者: Hao Yu Zhaoning Zhang Zheng Qin Hao Wu Dongsheng Li Jun Zhao Xicheng Lu Science and Technology on Parallel and Distributed Laboratory National University of Defense Technology Changsha China College of Electronic and Engineering National University of Defense Technology Changsha China College of Meteorology and Oceanology National University of Defense Technology Changsha China
Modern object detectors usually suffer from low accuracy issues, as foregrounds always drown in tons of back-grounds and become hard examples during training. Compared with those proposal-based ones, real-time detecto... 详细信息
来源: 评论