咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 理学
    • 39 篇 数学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 21 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 管理学
    • 8 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 deep neural netw...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 16 篇 college of mathe...
  • 8 篇 college of mathe...
  • 8 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...

作者

  • 21 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 wang ran
  • 10 篇 jian lu
  • 9 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 liao muxin
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang
  • 3 篇 zhang lei

语言

  • 94 篇 英文
  • 3 篇 其他
检索条件"机构=The Shenzhen Key Laboratory of Advanced Machine Learning and Applications"
97 条 记 录,以下是51-60 订阅
排序:
EMBANet: A Flexible Efficient Multi-branch Attention Network
arXiv
收藏 引用
arXiv 2024年
作者: Zu, Keke Zhang, Hu Lu, Jian Zhang, Lei Xu, Chen Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong Shenzhen China University of Electronic Science and Technology of China Zhejiang Quzhou China
This work presents a novel module, namely multi-branch concat (MBC), to process the input tensor and obtain the multi-scale feature map. The proposed MBC module brings new degrees of freedom (DoF) for the design of at...
来源: 评论
Embanet: A Flexible Efficient Multi-Branch Attention Network
SSRN
收藏 引用
SSRN 2023年
作者: Zu, Keke Zhang, Hu Lu, Jian Zhang, Lei Xu, Chen Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong Shenzhen China University of Electronic Science and Technology of China Zhejiang Quzhou China
This work presents a novel module, namely multi-branch concat (MBC), toprocess the input tensor and obtain the multi-scale feature map. The proposedMBC module brings new degrees of freedom (DoF) for the design of atte...
来源: 评论
Atomic Filter: a Weak Form of Shift Operator for Graph Signals
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Lihua Zhang, Qing Zhang, Qian Huang, Chao School of Mathematics Sun Yat-sen University Guangzhou510275 China Guangdong Province Key Laboratory of Computational Science China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
The shift operation plays a crucial role in the classical signal processing. It is the generator of all the filters and the basic operation for time-frequency analysis, such as windowed Fourier transform and wavelet t... 详细信息
来源: 评论
Feature Selection for Data Classification based on Binary Brain Storm Optimization
Feature Selection for Data Classification based on Binary Br...
收藏 引用
IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
作者: Farhad Pourpanah Ran Wang Xizhao Wang College of Mathematics and Statistics Shenzhen University China Shenzhen Key Lab. Of advanced machine learning and applications Shenzhen University China Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China
Brain Storm Optimization (BSO) is an effective population-based optimization method inspired by human brainstorming process. This paper proposes a new binary BSO algorithm (BBSO) to develop a new feature selection app... 详细信息
来源: 评论
Orthogonal subspace based fast iterative thresholding algorithms for joint sparsity recovery
arXiv
收藏 引用
arXiv 2021年
作者: Han, Ningning Li, Shidong Lu, Jian Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics San Francisco State University San FranciscoCA94132 United States
Sparse signal recoveries from multiple measurement vectors (MMV) with joint sparsity property have many applications in signal, image, and video processing. The problem becomes much more involved when snapshots of the... 详细信息
来源: 评论
Similarity and Dissimilarity Guided Co-association Matrix Construction for Ensemble Clustering
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Xu Jia, Yuheng Song, Mofei Wang, Ran School of Computer Science and Engineering South University Nanjing210093 China School of Mathematical Sciences Shenzhen University Shenzhen518060 China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
Ensemble clustering aggregates multiple weak clusterings to achieve a more accurate and robust consensus result. The Co-Association matrix (CA matrix) based method is the mainstream ensemble clustering approach that c... 详细信息
来源: 评论
ORTHOGONAL CONSTRAINED MINIMIZATION WITH TENSOR 2,p REGULARIZATION FOR HSI DENOISING AND DESTRIPING
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoxia Yu, Shijie Lu, Jian Chen, Xiaojun Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical Sciences Shenzhen University Shenzhen518060 China Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong National Center for Applied Mathematics Shenzhen Shenzhen518055 China
Hyperspectral images (HSIs) are often contaminated by a mixture of noises such as Gaussian noise, dead lines, stripes, and so on. In this paper, we propose a novel approach for HSI denoising and destriping, called MLT... 详细信息
来源: 评论
Geometric Edge Convolution for Rigid Transformation Invariant Features in 3d Point Clouds
SSRN
收藏 引用
SSRN 2024年
作者: Bello, Saifullahi Aminu Alfasly, Saghir Mao, Jiawei Lu, Jian Li, Lin Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen518055 China Pazhou Lab Guangzhou510335 China School of Electronic Engineering Xidian University Xi’an710071 China
Extracting rigid transformation invariant features is still a challenge on 3D point clouds because rigid transformation changes the point coordinates, and relying on the point coordinates, most existing deep learning ... 详细信息
来源: 评论
HOCA: Higher-Order Channel Attention for Single Image Super-Resolution
HOCA: Higher-Order Channel Attention for Single Image Super-...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Yalei Lv Tao Dai Bin Chen Jian Lu Shu-Tao Xia Jingchao Cao Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China PCL Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China City University of Hong Kong Hong Kong
Convolutional neural networks (CNNs) have obtained great success in single image super-resolution (SR). More recent works (e.g., RCAN and SAN) have obtained remarkable performance with channel attention based on first... 详细信息
来源: 评论
RIDNet: Recursive Information Distillation Network for Color Image Denoising
RIDNet: Recursive Information Distillation Network for Color...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Shengkai Zhuo Zhi Jin Wenbin Zou Xia Li Shenzhen University China College of Electronics and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University School of Intelligent Systems Engineering Sun Yat-sen University Sun Yat-sen University China
Color image denoising is more challenging in effectiveness when compared with the grayscale one. Most existing methods play a certain role in efficiency or flexibility, but lack robustness to handle various noise leve... 详细信息
来源: 评论