咨询与建议

限定检索结果

文献类型

  • 1,097 篇 会议
  • 602 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,701 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,163 篇 工学
    • 645 篇 计算机科学与技术...
    • 573 篇 软件工程
    • 457 篇 控制科学与工程
    • 243 篇 机械工程
    • 130 篇 生物工程
    • 125 篇 交通运输工程
    • 118 篇 电气工程
    • 116 篇 仪器科学与技术
    • 116 篇 信息与通信工程
    • 60 篇 生物医学工程(可授...
    • 56 篇 光学工程
    • 46 篇 电子科学与技术(可...
    • 34 篇 化学工程与技术
    • 30 篇 动力工程及工程热...
    • 28 篇 安全科学与工程
    • 24 篇 建筑学
    • 21 篇 土木工程
  • 449 篇 理学
    • 235 篇 数学
    • 128 篇 生物学
    • 125 篇 系统科学
    • 88 篇 物理学
    • 77 篇 统计学(可授理学、...
    • 23 篇 化学
  • 327 篇 管理学
    • 275 篇 管理科学与工程(可...
    • 61 篇 工商管理
    • 56 篇 图书情报与档案管...
  • 76 篇 医学
    • 56 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 24 篇 药学(可授医学、理...
  • 51 篇 法学
    • 41 篇 社会学
  • 22 篇 农学
  • 20 篇 经济学
  • 17 篇 教育学
  • 13 篇 艺术学
  • 10 篇 文学
  • 3 篇 军事学

主题

  • 73 篇 training
  • 65 篇 feature extracti...
  • 51 篇 reinforcement le...
  • 48 篇 neural networks
  • 43 篇 computational mo...
  • 37 篇 deep learning
  • 36 篇 task analysis
  • 35 篇 automation
  • 33 篇 optimal control
  • 31 篇 vehicles
  • 27 篇 adaptive dynamic...
  • 26 篇 machine learning
  • 25 篇 conferences
  • 25 篇 visualization
  • 25 篇 data models
  • 24 篇 robots
  • 24 篇 trajectory
  • 23 篇 digital twin
  • 23 篇 transportation
  • 22 篇 artificial intel...

机构

  • 527 篇 state key labora...
  • 236 篇 the state key la...
  • 191 篇 school of artifi...
  • 140 篇 university of ch...
  • 127 篇 state key labora...
  • 100 篇 the state key la...
  • 79 篇 qingdao academy ...
  • 54 篇 ieee
  • 46 篇 school of automa...
  • 43 篇 state key labora...
  • 42 篇 chinese acad sci...
  • 33 篇 beijing engineer...
  • 29 篇 the school of ar...
  • 27 篇 institute of aut...
  • 22 篇 state key labora...
  • 22 篇 institute of aut...
  • 20 篇 school of comput...
  • 20 篇 cas center for e...
  • 19 篇 institute of sma...
  • 17 篇 cloud computing ...

作者

  • 174 篇 fei-yue wang
  • 122 篇 wang fei-yue
  • 81 篇 gang xiong
  • 52 篇 min tan
  • 50 篇 xiong gang
  • 47 篇 yisheng lv
  • 46 篇 zhao dongbin
  • 45 篇 qinglai wei
  • 44 篇 fenghua zhu
  • 43 篇 tan min
  • 42 篇 junzhi yu
  • 42 篇 derong liu
  • 40 篇 dongbin zhao
  • 38 篇 wei qinglai
  • 38 篇 zeng-guang hou
  • 35 篇 liu derong
  • 34 篇 xiao wang
  • 34 篇 yu junzhi
  • 32 篇 long cheng
  • 30 篇 cheng long

语言

  • 1,644 篇 英文
  • 34 篇 中文
  • 23 篇 其他
  • 1 篇 法文
检索条件"机构=The State Key Lab of Management and Control for Complex Systems Institute of Automation"
1701 条 记 录,以下是401-410 订阅
排序:
Activity and Relationship Modeling Driven Weakly Supervised Object Detection
Activity and Relationship Modeling Driven Weakly Supervised ...
收藏 引用
International Conference on Pattern Recognition
作者: Yinlin Li Yang Qian Xu Yang Yuren Zhang State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China ByteDance Beijing China
This paper presents a weakly supervised object detection method based on activity label and relationship modeling, which is motivated by the assumption that configuration of human and object are similar in same activi... 详细信息
来源: 评论
A parallel framework for scene understanding  1
A parallel framework for scene understanding
收藏 引用
1st IEEE International Conference on Digital Twins and Parallel Intelligence, DTPI 2021
作者: Zhang, Wenwen Wang, Jiangong Wang, Kunfeng School of Software Engineering Xi'An Jiaotong University Xi'an710049 China Institute of Automation Chinese Academy of Sciences The State Key Laboratory for Management and Control of Complex Systems Beijing100190 China College of Information Science and Technology Beijing University of Chemical Technology Beijing100029 China
Different related computer vision tasks make it possible to understand and analyze the scene totally. However, there is no useful framework combining different tasks for scene understanding. In this paper, we investig... 详细信息
来源: 评论
Embed Trajectory Imitation in Reinforcement Learning: A Hybrid Method for Autonomous Vehicle Planning
Embed Trajectory Imitation in Reinforcement Learning: A Hybr...
收藏 引用
Digital Twins and Parallel Intelligence (DTPI), IEEE International Conference on
作者: Yuxiao Wang Xingyuan Dai Kara Wang Hub Ali Fenghua Zhu State Key Laboratory of Management and Control for Complex System Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China School of Artificial Intelligence Anhui University Hefei China
Learning-based autonomous vehicle trajectory planning methods have shown excellent performance in a variety of complex traffic scenarios. However, the existing imitation learning (IL) and reinforcement learning (RL) a...
来源: 评论
Heterogeneous Graph Reinforcement Learning for Dependency-aware Multi-task Allocation in Spatial Crowdsourcing
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Yong Zhu, Zhengqiu Gao, Chen Wang, En Huang, Jincai Wang, Fei-Yue College of Systems Engineering National University of Defense Technology Hunan Province Changsha410073 China BNRist Tsinghua University Beijing100084 China College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China
Spatial Crowdsourcing (SC) is gaining traction in both academia and industry, with tasks on SC platforms becoming increasingly complex and requiring collaboration among workers with diverse skills. Recent research wor... 详细信息
来源: 评论
Fast Trajectory Planning for Dubins Vehicles Under Cumulative Probability of Radar Detection
SSRN
收藏 引用
SSRN 2022年
作者: Li, Zhuo You, keyou Sun, Jian Song, Shiji State Key Lab of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China Department of Automation and BNRist Tsinghua University Beijing100084 China Beijing Institute of Technology Chongqing Innovation Center Chongqing401120 China
This paper studies a minimum-time trajectory planning problem under radar detection, where a Dubins vehicle aims to attack a target with a limited probability of being detected. Since the probability is accumulated al... 详细信息
来源: 评论
An Earth Observation Satellite Mission Planning Method Based on Deep Q-Learning  6
An Earth Observation Satellite Mission Planning Method Based...
收藏 引用
6th International Symposium on Computer and Information Processing Technology, ISCIPT 2021
作者: Chen, Tianyuan Wang, Hongfei Liu, Hao Wu, Peng University of Chinese Academy of Sciences Key Laboratory of Space Utilization Technology and Engineering Center for Space Utilization Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence Beijing China
With the increasing number of earth observation satellites and observation demands, satellite mission planning is facing huge challenges. For traditional satellite mission planning methods, there are problems such as ... 详细信息
来源: 评论
OSTER: An Orientation Sensitive Scene Text Recognizer with CenterLine Rectification  5th
OSTER: An Orientation Sensitive Scene Text Recognizer with C...
收藏 引用
5th Asian Conference on Pattern Recognition, ACPR 2019
作者: Feng, Zipeng Du, Chen Wang, Yanna Xiao, Baihua The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Scene texts in China are always arbitrarily arranged in two forms: horizontally and vertically. These two forms of texts exhibit distinctive features, making it difficult to recognize them simultaneously. Besides, rec... 详细信息
来源: 评论
Data-driven Self-triggered control via Trajectory Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Wenjie Sun, Jian Wang, Gang Bullo, Francesco Chen, Jie The State Key Lab of Intelligent Control and Decision of Complex Systems The School of Automation Beijing Institute of Technology Beijing100081 China The Beijing Institute of Technology Chongqing Innovation Center Chongqing401120 China The Mechanical Engineering Department The Center of Control Dynamical Systems and Computation UC Santa BarbaraCA93106-5070 United States The Department of Control Science and Engineering Tongji University Shanghai201804 China The State Key Lab of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China
Self-triggered control, a well-documented technique for reducing the communication overhead while ensuring desired system performance, is gaining increasing popularity. However, existing methods for self-triggered con... 详细信息
来源: 评论
EiHi Net: Out-of-Distribution Generalization Paradigm
arXiv
收藏 引用
arXiv 2022年
作者: Wei, Qinglai Yuan, Beiming Chen, Diancheng State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China Institute of Systems Engineering Macau University of Science and Technology 999078 China
This paper develops EiHi to solve the out of distribution (O.o.D.) problem in recognition, especially the distribution shift of background. EiHi net is a model learning paradigm that can be blessed on any visual backb... 详细信息
来源: 评论
Learning from the Negativity: Deep Negative Correlation Meta-Learning for Adversarial Image Classification  27th
Learning from the Negativity: Deep Negative Correlation Meta...
收藏 引用
27th International Conference on MultiMedia Modeling, MMM 2021
作者: Zheng, Wenbo Yan, Lan Wang, Fei-Yue Gou, Chao School of Software Engineering Xi’an Jiaotong University Xi’an China School of Intelligent Systems Engineering Sun Yat-sen University Guangzhou China The State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Adversarial images are commonly viewed negatively for neural network training. Here we present an opposite perspective: adversarial images can be used to investigate the problem of classifying adversarial images thems... 详细信息
来源: 评论