咨询与建议

限定检索结果

文献类型

  • 443 篇 期刊文献
  • 420 篇 会议

馆藏范围

  • 863 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 621 篇 工学
    • 509 篇 计算机科学与技术...
    • 396 篇 软件工程
    • 117 篇 信息与通信工程
    • 65 篇 控制科学与工程
    • 53 篇 电气工程
    • 50 篇 网络空间安全
    • 37 篇 电子科学与技术(可...
    • 35 篇 生物工程
    • 25 篇 机械工程
    • 24 篇 安全科学与工程
    • 21 篇 光学工程
    • 15 篇 动力工程及工程热...
    • 15 篇 化学工程与技术
    • 15 篇 轻工技术与工程
    • 12 篇 交通运输工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 仪器科学与技术
    • 11 篇 土木工程
  • 239 篇 理学
    • 140 篇 数学
    • 47 篇 生物学
    • 46 篇 物理学
    • 42 篇 统计学(可授理学、...
    • 25 篇 系统科学
    • 15 篇 化学
  • 142 篇 管理学
    • 87 篇 管理科学与工程(可...
    • 66 篇 图书情报与档案管...
    • 32 篇 工商管理
  • 35 篇 法学
    • 24 篇 社会学
    • 12 篇 法学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 13 篇 军事学
  • 10 篇 医学
  • 9 篇 农学
  • 7 篇 教育学
  • 3 篇 文学

主题

  • 32 篇 privacy
  • 28 篇 semantics
  • 27 篇 blockchain
  • 26 篇 security
  • 22 篇 federated learni...
  • 19 篇 deep learning
  • 17 篇 codes
  • 17 篇 feature extracti...
  • 17 篇 accuracy
  • 16 篇 data privacy
  • 15 篇 cloud computing
  • 15 篇 cryptography
  • 13 篇 differential pri...
  • 13 篇 protocols
  • 13 篇 data models
  • 13 篇 training
  • 12 篇 computational mo...
  • 12 篇 robustness
  • 11 篇 authentication
  • 11 篇 graph neural net...

机构

  • 176 篇 the state key la...
  • 105 篇 state key labora...
  • 85 篇 state key labora...
  • 78 篇 institute of blo...
  • 71 篇 data assurance a...
  • 70 篇 school of cyber ...
  • 55 篇 zhejiang univers...
  • 45 篇 university of ch...
  • 43 篇 state key labora...
  • 30 篇 college of compu...
  • 29 篇 state key labora...
  • 28 篇 hangzhou high-te...
  • 26 篇 zhejiang univers...
  • 21 篇 school of softwa...
  • 18 篇 state key labora...
  • 18 篇 data assurance a...
  • 18 篇 information secu...
  • 16 篇 zhejiang univers...
  • 15 篇 singapore manage...
  • 15 篇 huawei

作者

  • 39 篇 song mingli
  • 38 篇 ren kui
  • 23 篇 xia xin
  • 23 篇 qin zhan
  • 22 篇 tian youliang
  • 21 篇 yang xiaohu
  • 20 篇 youliang tian
  • 20 篇 hu xing
  • 19 篇 chen yuling
  • 18 篇 chen gang
  • 18 篇 lin jingqiang
  • 17 篇 chen jiawei
  • 17 篇 liu zhenguang
  • 17 篇 chen chun
  • 17 篇 li yiming
  • 16 篇 liu zhongxin
  • 16 篇 wang can
  • 15 篇 shou lidan
  • 15 篇 lo david
  • 15 篇 chen ke

语言

  • 698 篇 英文
  • 159 篇 其他
  • 7 篇 中文
检索条件"机构=The State Key Laboratory of Blockchain and Data Security"
863 条 记 录,以下是151-160 订阅
排序:
Identifying data Breaches in Dark Web through Prompt Active Learning  9
Identifying Data Breaches in Dark Web through Prompt Active ...
收藏 引用
9th IEEE International Conference on data Science in Cyberspace, DSC 2024
作者: Xiang, Hui Wu, Yifan Wang, Xuebin Shi, Jinqiao Zhao, Can Zhao, Jiapeng Beijing University of Posts and Telecommunications School of Cyberspace Security Beijing China Zhejiang University The State Key Laboratory of Blockchain and Data Security Hangzhou China Beijing China University of Chinese Academy of Sciences School of Cyber Security Beijing China Chinese Academy of Sciences Institute of Information Engineering Beijing China
Frequent data breaches have attracted people's attention. The dark web forums have become the crucial platform for data breach transactions. While some forums are well-organized with distinct sections, such as a d... 详细信息
来源: 评论
Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
arXiv
收藏 引用
arXiv 2024年
作者: Shang, Zongjiang Chen, Ling Wu, Binqing Cui, Dongliang State Key Laboratory of Blockchain and Data Security College of Computer Science and Technology Zhejiang University China
Although transformer-based methods have achieved great success in multi-scale temporal pattern interaction modeling, two key challenges limit their further development: (1) Individual time points contain less semantic... 详细信息
来源: 评论
Advancing Loss Functions in Recommender Systems: A Comparative Study with a Rényi Divergence-Based Solution  39
Advancing Loss Functions in Recommender Systems: A Comparati...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhang, Shengjia Chen, Jiawei Li, Changdong Zhou, Sheng Shi, Qihao Feng, Yan Chen, Chun Wang, Can State Key Laboratory of Blockchain and Data Security Zhejiang University China College of Computer Science Zhejiang University China Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security China
Loss functions play a pivotal role in optimizing recommendation models. Among various loss functions, Softmax Loss (SL) and Cosine Contrastive Loss (CCL) are particularly effective. Their theoretical connections and d...
来源: 评论
BSL: Understanding and Improving Softmax Loss for Recommendation  40
BSL: Understanding and Improving Softmax Loss for Recommenda...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Wu, Junkang Chen, Jiawei Wu, Jiancan Shi, Wentao Zhang, Jizhi Wang, Xiang University of Science and Technology of China MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition Hefei China Zhejiang Unversity The State Key Laboratory of Blockchain and Data Security China Institute of Artificial Intelligence Institute of Dataspace Hefei Comprehensive National Science Center. China
Loss functions steer the optimization direction of recommendation models and are critical to model performance, but have received relatively little attention in recent recommendation research. Among various losses, we... 详细信息
来源: 评论
A Comprehensive Study of Shapley Value in data Analytics
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Hong Wan, Shixin Xie, Zhongle Chen, Ke Zhang, Meihui Shou, Lidan Chen, Gang State Key Laboratory of Blockchain and Data Security Zhejiang University China Beijing Institute of Technology China
Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used througho... 详细信息
来源: 评论
DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Qian Chen, Ling State Key Laboratory of Blockchain and Data Security College of Computer Science and Technology Zhejiang University China
Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space. However, existing approaches cannot... 详细信息
来源: 评论
Training data Provenance Verification: Did Your Model Use Synthetic data from My Generative Model for Training?
arXiv
收藏 引用
arXiv 2025年
作者: Xie, Yuechen Song, Jie Wang, Huiqiong Song, Mingli Zhejiang University China Ningbo Innovation Center Zhejiang University China State Key Laboratory of Blockchain and Security Zhejiang University China Institute of Blockchain and Data Security China
High-quality open-source text-to-image models have lowered the threshold for obtaining photorealistic images significantly, but also face potential risks of misuse. Specifically, suspects may use synthetic data genera... 详细信息
来源: 评论
Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks  38
Model LEGO: Creating Models Like Disassembling and Assemblin...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hu, Jiacong Gao, Jing Ye, Jingwen Gao, Yang Wang, Xingen Feng, Zunlei Song, Mingli College of Computer Science and Technology Zhejiang University China Robotics Institute School of Computer Science Carnegie Mellon University United States Electrical and Computer Engineering National University of Singapore Singapore School of Software Technology Zhejiang University China State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Bangsheng Technology Co. Ltd. China
With the rapid development of deep learning, the increasing complexity and scale of parameters make training a new model increasingly resource-intensive. In this paper, we start from the classic convolutional neural n...
来源: 评论
Are "Solved Issues" in SWE-bench Really Solved Correctly? An Empirical Study
arXiv
收藏 引用
arXiv 2025年
作者: Wang, You Pradel, Michael Liu, Zhongxin The State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China University of Stuttgart Stuttgart Germany
Automated issue solving aims to resolve real-world issues in software repositories. The most popular benchmarks for automated issue solving are SWE-bench and its human-filtered subset SWE-bench Verified, which are wid... 详细信息
来源: 评论
APIBeh: Learning Behavior Inclination of APIs for Malware Classification
APIBeh: Learning Behavior Inclination of APIs for Malware Cl...
收藏 引用
International Symposium on Software Reliability Engineering (ISSRE)
作者: Lei Cui Yiran Zhu Junnan Yin Zhiyu Hao Wei Wang Peng Liu Ziqi Yang Xiaochun Yun Zhongguancun Laboratory The State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security School of Computer Science and Engineering Guangxi Normal University
Malware classification involves categorizing mal-ware samples based on their characteristics. While deep learning techniques applied to malware execution traces, mainly API calls, have shown potential in this field, t... 详细信息
来源: 评论