咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 75 篇 会议

馆藏范围

  • 155 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 工学
    • 93 篇 计算机科学与技术...
    • 81 篇 软件工程
    • 16 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 7 篇 电气工程
    • 6 篇 测绘科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 生物工程
    • 5 篇 网络空间安全
    • 4 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
  • 33 篇 理学
    • 15 篇 数学
    • 10 篇 统计学(可授理学、...
    • 6 篇 生物学
    • 4 篇 化学
    • 4 篇 系统科学
    • 3 篇 物理学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 25 篇 管理学
    • 17 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 5 篇 法学
    • 2 篇 法学
    • 2 篇 社会学
    • 1 篇 政治学
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 11 篇 contrastive lear...
  • 10 篇 training
  • 9 篇 semantics
  • 8 篇 accuracy
  • 7 篇 reinforcement le...
  • 7 篇 data models
  • 6 篇 large language m...
  • 6 篇 codes
  • 6 篇 computer vision
  • 5 篇 predictive model...
  • 4 篇 deep learning
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 benchmarking
  • 4 篇 feature extracti...
  • 4 篇 machine learning
  • 4 篇 software
  • 3 篇 internet of thin...
  • 3 篇 software enginee...
  • 3 篇 self-supervised ...

机构

  • 50 篇 state key labora...
  • 25 篇 state key labora...
  • 17 篇 school of comput...
  • 14 篇 zhongguancun lab...
  • 11 篇 institute of art...
  • 9 篇 national univers...
  • 9 篇 school of comput...
  • 8 篇 college of compu...
  • 8 篇 the university o...
  • 8 篇 riken aip
  • 7 篇 institute of dat...
  • 7 篇 state key labora...
  • 5 篇 school of comput...
  • 5 篇 institute of sem...
  • 4 篇 college of compu...
  • 4 篇 sensetime resear...
  • 4 篇 school of softwa...
  • 4 篇 school of transp...
  • 4 篇 faculty of educa...
  • 4 篇 institute of sma...

作者

  • 11 篇 liu xianglong
  • 11 篇 xu kele
  • 10 篇 feng dawei
  • 10 篇 wang huaimin
  • 9 篇 huang di
  • 9 篇 bai xiao
  • 9 篇 zheng jin
  • 8 篇 li zhoujun
  • 8 篇 wu junran
  • 8 篇 liu fang
  • 7 篇 ding bo
  • 7 篇 yang jian
  • 7 篇 xu ke
  • 6 篇 gao zijian
  • 6 篇 zhai yuanzhao
  • 6 篇 liu ruomei
  • 6 篇 gu lin
  • 6 篇 kele xu
  • 6 篇 xianglong liu
  • 6 篇 li jiahe

语言

  • 124 篇 英文
  • 29 篇 其他
  • 2 篇 中文
检索条件"机构=The State Key Laboratory of Complex and Critical Software Environment"
155 条 记 录,以下是1-10 订阅
排序:
Rumor Detection on Social Media with Temporal Propagation Structure Optimization  31
Rumor Detection on Social Media with Temporal Propagation St...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Peng, Xingyu Wu, Junran Liu, Ruomei Xu, Ke State Key Laboratory of Complex & Critical Software Environment Beihang University Beijing China
Traditional methods for detecting rumors on social media primarily focus on analyzing textual content, often struggling to capture the complexity of online interactions. Recent research has shifted towards leveraging ... 详细信息
来源: 评论
Complementary Learning System Theory-based Active Learning for Audio Classification
Complementary Learning System Theory-based Active Learning f...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Geng, Hui Gao, Zijian Wan, Tianjiao Feng, Dawei Wang, Changjian Xu, Kele College of Computer Science and Technology National University of Defense Technology Changsha China State Key Laboratory of Complex & Critical Software Environment Changsha China
Deep learning has significantly advanced the audio classification, achieving remarkable results. However, these successes often rely on extensive manual annotation of audio, a labor-intensive and costly process. Activ... 详细信息
来源: 评论
On the Applicability of Code Language Models to Scientific Computing Programs
收藏 引用
IEEE Transactions on software Engineering 2025年
作者: Zhao, Qianhui Liu, Fang Long, Xiao Wu, Chengru Zhang, Li State Key Laboratory of Complex & Critical Software Environment Beihang University Beijing China
Scientific Computing Programming Languages (SCPLs), like MATLAB and R, are popular and widely used for computational mathematics. In recent years, pre-trained code language models (CLMs) have automated many code-relat... 详细信息
来源: 评论
Deep learning-based software engineering: progress,challenges, and opportunities
收藏 引用
Science China(Information Sciences) 2025年 第1期68卷 57-144页
作者: Xiangping CHEN Xing HU Yuan HUANG He JIANG Weixing JI Yanjie JIANG Yanyan JIANG Bo LIU Hui LIU Xiaochen LI Xiaoli LIAN Guozhu MENG Xin PENG Hailong SUN Lin SHI Bo WANG Chong WANG Jiayi WANG Tiantian WANG Jifeng XUAN Xin XIA Yibiao YANG Yixin YANG Li ZHANG Yuming ZHOU Lu ZHANG School of Journalism and Communication Sun Yat-sen University School of Software Technology Zhejiang University School of Software Engineering Sun Yat-sen University School of Software Dalian University of Technology School of Computer Science and Technology Beijing Institute of Technology Key Laboratory of High Confidence Software Technologies (Peking University) Ministry of EducationSchool of Computer Science Peking University State Key Laboratory for Novel Software Technology Nanjing University School of Computer Science and Engineering Beihang University Institute of Information Engineering Chinese Academy of Sciences School of Computer Science Fudan University State Key Laboratory of Complex & Critical Software Environment (CCSE) School of Software Beihang University School of Computer and Information Technology Beijing Jiaotong University School of Computer Science and Technology Harbin Institute of Technology School of Computer Science Wuhan University Huawei Technologies
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r... 详细信息
来源: 评论
SSAST-Adapter: A Parameter-efficient Incremental Learning Algorithm for Underwater Acoustic Target Recognition
SSAST-Adapter: A Parameter-efficient Incremental Learning Al...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhu, Qian Xu, Qisheng Zhu, Boqing Gao, Zijian Zeng, Lingbin Xu, Kele College of Computer Science and Technology National University of Defense Technology Changsha China State Key Laboratory of Complex & Critical Software Environment Changsha China College of Meteorology and Oceanography National University of Defense Technology Changsha China
Underwater acoustic target recognition involves identifying and classifying targets in underwater environments using acoustic signals. In recent years, deep learning has made significant progress in this field. Howeve... 详细信息
来源: 评论
Pushing the Limit of Post-Training Quantization
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年 PP卷 PP页
作者: Gong, Ruihao Liu, Xianglong Li, Yuhang Fan, Yunqiang Wei, Xiuying Guo, Jinyang Beihang University State Key Laboratory of Complex & Critical Software Environment Beijing100191 China Yale University New HavenCT06511 United States ShanghaiTech University Shanghai201210 China Beihang University State Key Laboratory of Complex & Critical Software Environment Institute of Artificial Intelligence Beijing100191 China
Recently, post-training quantization (PTQ) has become the de facto way to produce efficient low-precision neural networks without long-time retraining. Despite its low cost, current PTQ works fail to succeed under the... 详细信息
来源: 评论
A Feature-Aware Transformer Approach for Enhanced Maritime Trajectory Prediction
A Feature-Aware Transformer Approach for Enhanced Maritime T...
收藏 引用
2024 International Conference Optoelectronic Information and Optical Engineering, OIOE 2024
作者: Wang, Wuyong Ma, Xingkong Liu, Bo College of Computer Science and Technology National University of Defense Technology Changsha410073 China State Key Laboratory of Complex & Critical Software Environment Changsha410073 China Strategic Evaluation and Consultation Center Academy of Military Sciences Beijing100000 China
Predicting ship trajectories is vital for enhancing maritime safety, optimizing route planning, and boosting the efficiency of maritime traffic management. Current research often neglects the complex marine environmen... 详细信息
来源: 评论
Towards practical data alignment in production federated learning
收藏 引用
Frontiers of Computer Science 2025年 第1期19卷 167-169页
作者: Yexuan SHI Wei YU Yuanyuan ZHANG Chunbo XUE Yuxiang ZENG Zimu ZHOU Manxue GUO Lun XIN Wenjing NIE State Key Laboratory of Complex&Critical Software Environment and Advanced Innovation Center for Future Blockchain and Privacy Computing Beihang UniversityBeijing 100191China Zhongguancun Pan Connected Mobile Communication Technology Innovation and Application Research Institute Beijing 100088China China Mobile Research Institute Beijing 100053China School of Data Science City University of Hong KongHong Kong 999077China
1 Introduction Federated learning has emerged as a promising par-adigm for collaborative model training that facilitates cooperation among multiple parties while ensuring data privacy[1].Successful alignment of data a... 详细信息
来源: 评论
Structural Entropy Guided Unsupervised Graph Out-Of-Distribution Detection
arXiv
收藏 引用
arXiv 2025年
作者: Hou, Yue Zhu, He Liu, Ruomei Su, Yingke Xia, Jinxiang Wu, Junran Xu, Ke State Key Laboratory of Complex & Critical Software Environment Beihang University China Shen Yuan Honors College Beihang University China
With the emerging of huge amount of unlabeled data, unsupervised out-of-distribution (OOD) detection is vital for ensuring the reliability of graph neural networks (GNNs) by identifying OOD samples from in-distributio...
来源: 评论
Enhancing Cervical Segmentation via Alternate Diverse Teaching in Semi-Supervised Learning
Enhancing Cervical Segmentation via Alternate Diverse Teachi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jiawei Yu College of Computer Science National University of Defense Technology Changsha China State Key Laboratory of Complex & Critical Software Environment Changsha China
In clinical practice, the cervical structure plays a critical role in predicting preterm birth, thus making accurate segmentation of this structure in ultrasound images of paramount importance. However, the performanc... 详细信息
来源: 评论