咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 1 篇 object detection
  • 1 篇 self-supervised ...

机构

  • 1 篇 university of sc...
  • 1 篇 shanghai jiao to...
  • 1 篇 zhejiang univers...
  • 1 篇 microsoft resear...
  • 1 篇 shenzhen interna...
  • 1 篇 the shanghai ai ...
  • 1 篇 the visual compu...
  • 1 篇 intelligent perc...
  • 1 篇 shanghai collabo...
  • 1 篇 wuhan university
  • 1 篇 shanghai ai labo...
  • 1 篇 tsinghua shenzhe...
  • 1 篇 northwestern pol...
  • 1 篇 northwest univer...
  • 1 篇 shanghai key lab...
  • 1 篇 the college of e...
  • 1 篇 chinese universi...

作者

  • 1 篇 yang jianwei
  • 1 篇 meng lingchen
  • 1 篇 hou yuenan
  • 1 篇 wu tong
  • 1 篇 sun zeyi
  • 1 篇 xu zunnan
  • 1 篇 li xiu
  • 1 篇 zu yanyan
  • 1 篇 wang zeyu
  • 1 篇 yan longquan
  • 1 篇 liu yongxiang
  • 1 篇 chen zhineng
  • 1 篇 liu zhen
  • 1 篇 wu sihong
  • 1 篇 zhou qifan
  • 1 篇 jiang yu-gang
  • 1 篇 nie xuan
  • 1 篇 chai bosong
  • 1 篇 cao yuhang
  • 1 篇 wang jiaqi

语言

  • 2 篇 其他
检索条件"机构=The Visual Computing and Intelligent Perception Lab"
2 条 记 录,以下是1-10 订阅
排序:
Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture
arXiv
收藏 引用
arXiv 2023年
作者: Li, Weijie Wei, Yang Liu, Tianpeng Hou, Yuenan Li, Yuxuan Liu, Zhen Liu, Yongxiang Liu, Li The College of Electronic Science and Technology National University of Defense Technology Changsha410073 China The Shanghai AI Laboratory Shanghai200000 China The Visual Computing and Intelligent Perception Lab Nankai University Tianjin300071 China
The growing Synthetic Aperture Radar (SAR) data can build a foundation model using self-supervised learning (SSL) methods, which can achieve various SAR automatic target recognition (ATR) tasks with pretraining in lar... 详细信息
来源: 评论
V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Jiaqi Zang, Yuhang Zhang, Pan Chu, Tao Cao, Yuhang Sun, Zeyi Liu, Ziyu Dong, Xiaoyi Wu, Tong Lin, Dahua Chen, Zeming Wang, Zhi Meng, Lingchen Yao, Wenhao Yang, Jianwei Wu, Sihong Chen, Zhineng Wu, Zuxuan Jiang, Yu-Gang Wu, Peixi Chai, Bosong Nie, Xuan Yan, Longquan Wang, Zeyu Zhou, Qifan Wang, Boning Huang, Jiaqi Xu, Zunnan Li, Xiu Yuan, Kehong Zu, Yanyan Hao, Jiayao Gao, Qiong Jiao, Licheng Shanghai AI Laboratory China Chinese University of Hong Kong Hong Kong Shanghai Jiao Tong University China Wuhan University China Shenzhen International Graduate School Tsinghua University China Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft Research Redmond United States University of Science and Technology of China China Zhejiang University China Northwestern Polytechnical University China Northwest University China Tsinghua Shenzhen International Graduate School Tsinghua University China Intelligent Perception and Image Understanding Lab Xidian University China
Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges nec... 详细信息
来源: 评论