咨询与建议

限定检索结果

文献类型

  • 347 篇 会议
  • 336 篇 期刊文献

馆藏范围

  • 683 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 456 篇 工学
    • 349 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 109 篇 信息与通信工程
    • 74 篇 控制科学与工程
    • 69 篇 电气工程
    • 66 篇 生物工程
    • 43 篇 光学工程
    • 42 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 化学工程与技术
    • 18 篇 网络空间安全
    • 12 篇 动力工程及工程热...
    • 12 篇 交通运输工程
    • 12 篇 安全科学与工程
  • 236 篇 理学
    • 137 篇 数学
    • 69 篇 生物学
    • 49 篇 物理学
    • 47 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 18 篇 化学
  • 157 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 78 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 38 篇 医学
    • 31 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 23 篇 法学
    • 17 篇 社会学
  • 14 篇 经济学
    • 13 篇 应用经济学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 feature extracti...
  • 27 篇 deep learning
  • 27 篇 training
  • 25 篇 predictive model...
  • 23 篇 semantics
  • 19 篇 data models
  • 18 篇 computational mo...
  • 16 篇 graph neural net...
  • 15 篇 contrastive lear...
  • 14 篇 convolution
  • 12 篇 accuracy
  • 11 篇 reinforcement le...
  • 11 篇 signal processin...
  • 11 篇 speech processin...
  • 10 篇 analytical model...
  • 10 篇 machine learning
  • 10 篇 forecasting
  • 9 篇 object detection
  • 9 篇 anomaly detectio...
  • 9 篇 convergence

机构

  • 34 篇 chongqing key la...
  • 33 篇 national enginee...
  • 32 篇 key laboratory o...
  • 25 篇 school of comput...
  • 23 篇 college of compu...
  • 22 篇 zhejiang univers...
  • 21 篇 zhejiang key lab...
  • 20 篇 engineering rese...
  • 20 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 17 篇 fujian key labor...
  • 16 篇 university of ch...
  • 15 篇 school of cyber ...
  • 15 篇 guangdong provin...
  • 15 篇 chongqing key la...
  • 14 篇 school of comput...
  • 14 篇 shenzhen institu...
  • 13 篇 peng cheng labor...
  • 13 篇 alibaba group
  • 12 篇 key laboratory o...

作者

  • 27 篇 wang guoyin
  • 22 篇 huang qingming
  • 20 篇 shen linlin
  • 20 篇 xu qianqian
  • 16 篇 chen huajun
  • 15 篇 yang zhiyong
  • 15 篇 miao qiguang
  • 13 篇 wang lihui
  • 12 篇 shang mingsheng
  • 12 篇 xia shuyin
  • 12 篇 zhang ningyu
  • 11 篇 xin luo
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 11 篇 cao xiaochun
  • 9 篇 liu jun
  • 9 篇 jian-tao zhou
  • 9 篇 shi xiaoyu
  • 9 篇 mingsheng shang
  • 9 篇 li yunan

语言

  • 612 篇 英文
  • 61 篇 其他
  • 24 篇 中文
检索条件"机构=The Xi’an Key Laboratory of Big Data and Intelligent Computing"
683 条 记 录,以下是91-100 订阅
排序:
A Model robustness optimization method based on adversarial sample detection  22
A Model robustness optimization method based on adversarial ...
收藏 引用
Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition
作者: Jiaze Sun Siyuan Long xianyan Ma Yanmei Tang Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an University of Posts & Telecommunications China Xi'an University of Posts & Telecommunications China
Deep neural networks are extremely vulnerable due to the existence of adversarial samples. It is a challenging problem to optimize the robustness of the model to protect deep neural networks from the threat of adversa... 详细信息
来源: 评论
Multi-View Fusion Networks for Multimodal Fake News Detection  11
Multi-View Fusion Networks for Multimodal Fake News Detectio...
收藏 引用
11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023
作者: Cui, Wei Li, Pu Zhang, Xuerui College of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China Chongqing Institute of Green and Intelligent Technology Chongqing Key Laboratory of Big Data and Intelligent Computing Chinese Academy of Sciences Chongqing China
The proliferation of multimedia fake news misleads social opinion, damages social harmony, and seriously challenges the authority of news media. Current multimodal fake news detection methods focus on extracting bette... 详细信息
来源: 评论
T³Planner: Multi-Phase Planning Across Structure-Constrained Optical, IP, and Routing Topologies
收藏 引用
IEEE Journal on Selected Areas in Communications 2025年 第5期43卷 1823-1839页
作者: Yijun Hao Shusen Yang Fang Li Yifan Zhang Cong Zhao Xuebin Ren Peng Zhao Chenren Xu Shibo Wang National Engineering Laboratory for Big Data Analytics Xi’an Jiaotong University Xi’an China National Engineering Laboratory for Big Data Analytics and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Computer Science Peking University Beijing China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong China National Engineering Laboratory for Big Data Analytics XiÃan Jiaotong University XiÃan China
Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, ... 详细信息
来源: 评论
DSAFF-Net:A Backbone Network Based on Mask R-CNN for Small Object Detection
收藏 引用
Computers, Materials & Continua 2023年 第2期74卷 3405-3419页
作者: Jian Peng Yifang Zhao Dengyong Zhang Feng Li Arun Kumar Sangaiah Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha University of Science and TechnologyChangsha410114China School of Computer and Communication Engineering Changsha University of Science and TechnologyChangsha410114China School of Computing Science and Engineering Vellore Institute of Technology(VIT)Vellore632014India
Recently,object detection based on convolutional neural networks(CNNs)has developed *** backbone networks for basic feature extraction are an important component of the whole detection ***,we present a new feature ext... 详细信息
来源: 评论
Some Thoughts on the Classification Standard of intelligent Autonomous Level of Measurement and Control System  9
Some Thoughts on the Classification Standard of Intelligent ...
收藏 引用
9th International Conference on big data and Information Analytics, bigDIA 2023
作者: Yuan, Guangfu Yang, Liu Han, Haoran Li, Yong Shao, Cong Zhan, Siyu Gansu Photoelectric Measurement Technology Research Laboratory Gansu735018 China University of Electronic Science and Technology of China Laboratory of Intelligent Collaborative Computing Chengdu China Trusted Cloud Computing and Big Data Key Laboratory of Sichuan Province Chengdu611731 China
Intelligence is an important trend in the development of measurement and control systems. However, there is still a lack of unified understanding of the intelligent autonomous classification of the measurement and con... 详细信息
来源: 评论
DDoS Detection and Defense Based on FLAD and SDN  20
DDoS Detection and Defense Based on FLAD and SDN
收藏 引用
20th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2024
作者: Dong, Jie Fang, Wenyu Zheng, Wanling Liu, Jinkun Liu, Yanhua College of Computer and Data Science Fuzhou University Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China
In order to achieve more efficient and accurate DDoS detection while ensuring data privacy, this paper proposes a DDoS detection method based on FLAD. Firstly, this paper uses the FLAD algorithm to train a global DDoS... 详细信息
来源: 评论
A Load Balancing Strategy Of "Container Virtual Machine" Cloud Microservice Based On Deadline Limit  14
A Load Balancing Strategy Of "Container Virtual Machine" Clo...
收藏 引用
14th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2022
作者: xia, Hong Liu, MengDi Chen, YanPing Jin, xiaoMin Wang, ZhongMin Wang, FengWei School of Computer Science and Technology Xi'an University of Posts and Telecommunications Shaanxi Xi'an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Shaanxi Xi'an710121 China Xi'an Key Laboratory of Big Data and Intelligent Computing Shaanxi Xi'an710121 China ZTE Corporation No.55 Hi-tech Road South Shenzhen518057 China
Aiming at the problem of workflow scheduling under the "container virtual machine" two-tier structure in cloud microservice workflow application, a "container virtual machine" load balancing strate... 详细信息
来源: 评论
Using Rough Sets to Improve the High-dimensional data Anomaly Detection Method Based on Extended Isolation Forest  26
Using Rough Sets to Improve the High-dimensional Data Anomal...
收藏 引用
26th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2023
作者: Liu, Hanlin Zhou, Jiantao Li, Hua Inner Mongolia University College of Computer Science Hohhot China Natl. Loc. Jt. Eng. Research Center of Intelligent Information Processing Technology for Mongolian Engineering Research Center of Ecological Big Data Ministry of Education Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software Inner Mongolia Key Laboratory of Social Computing and Data Processing Inner Mongolia Key Laboratory of Discipline Inspection and Supervision Big Data Inner Mongolia Engineering Laboratory for Big Data Analysis Technology Hohhot China
Anomaly detection refers to the identification of data objects that deviate from the general data distribution. One of the important challenges in anomaly detection is handling high-dimensional data, especially when i... 详细信息
来源: 评论
A Cross-Domain Ontology Semantic Representation Based on NCBI-BlueBERT Embedding
收藏 引用
Chinese Journal of Electronics 2022年 第5期31卷 860-869页
作者: ZHAO Lingling WANG Junjie WANG Chunyu GUO Maozu Faculty of Computing Harbin Institute of Technology Department of Medical Informatics School of Biomedical Engineering and InformaticsNanjing Medical University Beijing Key Laboratory of Intelligent Processing for Building Big Data School of Electrical and Information Engineering Beijing University of Civil Engineering and Architecture
A common but critical task in biological ontologies data analysis is to compare the difference between ontologies. There have been numerous ontologybased semantic-similarity measures proposed in specific ontology doma... 详细信息
来源: 评论
Tensor Graph Convolutional Network for Dynamic Graph Representation Learning  7
Tensor Graph Convolutional Network for Dynamic Graph Represe...
收藏 引用
7th International Symposium on Autonomous Systems, ISAS 2024
作者: Wang, Ling Yuan, Ye The School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing400065 China The Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Engineering Research Center of Big Data Application For Smart Cities Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China College of Computer and Information Science Southwest University Chongqing400715 China
Dynamic graphs (DG) represent evolving interactions between entities in various real-world scenarios. Many existing DG representation learning models employ a combination of graph convolutional networks and sequence n... 详细信息
来源: 评论