咨询与建议

限定检索结果

文献类型

  • 347 篇 会议
  • 336 篇 期刊文献

馆藏范围

  • 683 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 456 篇 工学
    • 349 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 109 篇 信息与通信工程
    • 74 篇 控制科学与工程
    • 69 篇 电气工程
    • 66 篇 生物工程
    • 43 篇 光学工程
    • 42 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 化学工程与技术
    • 18 篇 网络空间安全
    • 12 篇 动力工程及工程热...
    • 12 篇 交通运输工程
    • 12 篇 安全科学与工程
  • 236 篇 理学
    • 137 篇 数学
    • 69 篇 生物学
    • 49 篇 物理学
    • 47 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 18 篇 化学
  • 157 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 78 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 38 篇 医学
    • 31 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 23 篇 法学
    • 17 篇 社会学
  • 14 篇 经济学
    • 13 篇 应用经济学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 feature extracti...
  • 27 篇 deep learning
  • 27 篇 training
  • 25 篇 predictive model...
  • 23 篇 semantics
  • 19 篇 data models
  • 18 篇 computational mo...
  • 16 篇 graph neural net...
  • 15 篇 contrastive lear...
  • 14 篇 convolution
  • 12 篇 accuracy
  • 11 篇 reinforcement le...
  • 11 篇 signal processin...
  • 11 篇 speech processin...
  • 10 篇 analytical model...
  • 10 篇 machine learning
  • 10 篇 forecasting
  • 9 篇 object detection
  • 9 篇 anomaly detectio...
  • 9 篇 convergence

机构

  • 34 篇 chongqing key la...
  • 33 篇 national enginee...
  • 32 篇 key laboratory o...
  • 25 篇 school of comput...
  • 23 篇 college of compu...
  • 22 篇 zhejiang univers...
  • 21 篇 zhejiang key lab...
  • 20 篇 engineering rese...
  • 20 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 17 篇 fujian key labor...
  • 16 篇 university of ch...
  • 15 篇 school of cyber ...
  • 15 篇 guangdong provin...
  • 15 篇 chongqing key la...
  • 14 篇 school of comput...
  • 14 篇 shenzhen institu...
  • 13 篇 peng cheng labor...
  • 13 篇 alibaba group
  • 12 篇 key laboratory o...

作者

  • 27 篇 wang guoyin
  • 22 篇 huang qingming
  • 20 篇 shen linlin
  • 20 篇 xu qianqian
  • 16 篇 chen huajun
  • 15 篇 yang zhiyong
  • 15 篇 miao qiguang
  • 13 篇 wang lihui
  • 12 篇 shang mingsheng
  • 12 篇 xia shuyin
  • 12 篇 zhang ningyu
  • 11 篇 xin luo
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 11 篇 cao xiaochun
  • 9 篇 liu jun
  • 9 篇 jian-tao zhou
  • 9 篇 shi xiaoyu
  • 9 篇 mingsheng shang
  • 9 篇 li yunan

语言

  • 612 篇 英文
  • 61 篇 其他
  • 24 篇 中文
检索条件"机构=The Xi’an Key Laboratory of Big Data and Intelligent Computing"
683 条 记 录,以下是611-620 订阅
排序:
Time-aware bike flow prediction framework with dynamic edge fusion and memory integration
收藏 引用
Knowledge-Based Systems 2025年 322卷
作者: M.Rajeh, Taha Li, Tianrui Luo, Zhpeng Javed, Muhammad Hafeez Alhaek, Fares School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu611756 China Engineering Research Center of Sustainable Urban Intelligent Transportation Ministry of Education Chengdu611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu611756 China Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province Southwest Jiaotong University Chengdu611756 China Stirling College Chengdu University Chengdu610106 China Computing Science Faculty of Natural Sciences University of Stirling StirlingFK9 4LA United Kingdom
Bike-Sharing Systems (BSSs) have become a popular solution to urban sustainability concerns, providing affordable and environmentally friendly transportation. However, modeling and predicting shared-bike flow patterns... 详细信息
来源: 评论
Object tracking by the least spatiotemporal searches
arXiv
收藏 引用
arxiv 2020年
作者: Yu, Zhiyong Han, Lei Chen, Chao Guo, Wenzhong Yu, Zhiwen College of Mathematics and Computer Sciences Fuzhou University Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350108 China School of Computer Science Northwestern Polytechnical University Xi'an710072 China School of Computer Science Chongqing University Chongqing400044 China
Tracking a suspicious car or a person in a city efficiently is crucial in urban safety management. But how can we complete the task with the minimal number of spatiotemporal searches when massive camera records are in... 详细信息
来源: 评论
Hyperspectral Image Classification with Spatial Consistence Using Fully Convolutional Spatial Propagation Network
arXiv
收藏 引用
arxiv 2020年
作者: Jiang, Yenan Li, Ying Zou, Shanrong Zhang, Haokui Bai, Yunpeng School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech and Image Information Processing Northwestern Polytechnical University Xi’an710129 China School of Computer Science University of Adelaide AdelaideSA5005 Australia National Key Laboratory of Science and Technology on Space Microwave Xi’an710000 China School of Computing and Information Systems University of Melbourne MelbourneVIC3010 Australia
In recent years, deep convolutional neural networks (CNNs) have demonstrated impressive ability to represent hyperspectral images (HSIs) and achieved encouraging results in HSI classification. However, the existing CN... 详细信息
来源: 评论
A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
A Diverse Biases Non-negative Latent Factorization of Tensor...
收藏 引用
IEEE International Conference on Networking, Sensing and Control
作者: Xuke Wu Hang Gou Hao Wu Juan Wang Minzhi Chen Siyu Lai Computer School China West Normal University Nanchong China Computer School of China West Normal University Nanchong Sichuan China University of Chinese Academy of Sciences Beijing China Chongqing Engineering Research Center of Big Data Application for Smart Cities and Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China North Sichuan Medical College Nanchong China Medical College Nanchong Sichuan China
Dynamic networks vary over time, making it vital to capture networks temporal patterns for predicting missing links with high accuracy. A biased non-negative latent factorization of tensors (BNLFT) model is very effec... 详细信息
来源: 评论
Effects of annotation granularity in deep learning models for histopathological images
arXiv
收藏 引用
arxiv 2020年
作者: Shi, Jiangbo Gao, Zeyu Zhang, Haichuan Puttapirat, Pargorn Wang, Chunbao Zhang, xiangrong Li, Chen National Engineering Lab for Big Data Analytics Xi'an Jiao tong University Xi'an Shaanxi710049 China School of Electronic and Information Engineering Xi'an Jiao tong University Xi'an Shaanxi710049 China Shaan xi Province Key Laboratory of Satellite and Terrestrial Network Tech.R&D Xi'an Jiao tong University Xi'an Shaanxi710049 China Department of Pathology First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi710061 China Institute of Intelligent Information Processing Xidian University Xi'an Shaanxi710071 China
Pathological examination is an important step in cancer diagnosis. Pathologists make diagnosis and pathology report based on observed cell and tissue structure on pathological slides. With the development of statistic... 详细信息
来源: 评论
Sledge: Towards Efficient Live Migration of Docker Containers
Sledge: Towards Efficient Live Migration of Docker Container...
收藏 引用
IEEE International Conference on Cloud computing, CLOUD
作者: Bo Xu Song Wu Jiang xiao Hai Jin Yingxi Zhang Guoqiang Shi Tingyu Lin Jia Rao Li Yi Jizhong Jiang National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China State Key Laboratory of Intelligent Manufacturing System Technology Beijing China The University of Texas at Arlington Arlington TX USA Alibaba Cloud Computing Co. Ltd. Hangzhou China
Modern large-scale cloud platforms require live migration technique on Docker containers with stateful workload to support load balancing, host maintenance, and Quality of Service (QoS) improvement. Efficient and scal... 详细信息
来源: 评论
FedLGMatch: Federated semi-supervised learning via joint local and global pseudo labeling
收藏 引用
Knowledge-Based Systems 2025年 320卷
作者: Zhao, Qing Chu, Jielei Li, Zhaoyu Huang, Wei Luo, Zhipeng Li, Tianrui School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu611756 China Engineering Research Center of Sustainable Urban Intelligent Transportation Ministry of Education Chengdu611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu611756 China Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province Southwest Jiaotong University Chengdu611756 China China Railway Engineering Group Limited Beijing100039 China China Railway Eryuan Engineering Group Co. Ltd. Sichuan Chengdu610031 China College of Computer and Data Science Fuzhou University China
The bulk of existing Federated Learning (FL) algorithms pay attention to supervised setting and assume that clients have fully labeled data. However, it may be impractical for all clients to obtain plenty of labels du... 详细信息
来源: 评论
A Deep Temporal Collaborative Filtering Recommendation Framework via Joint Learning from Long and Short-Term Effects
A Deep Temporal Collaborative Filtering Recommendation Frame...
收藏 引用
IEEE International Conference on big data and Cloud computing (BdCloud)
作者: Qianqian Ji xiaoyu Shi Mingsheng Shang Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China University of Chinese Academy of Sciences Beijing China
Recommendations based on deep learning technologies are attracting increasingly attentions from academia and industry recently, due to it has the powerful ability of data representation learning, and can capture the c... 详细信息
来源: 评论
ProFPred: a two-step protein function prediction model based on sequence and evolutionary information
ProFPred: a two-step protein function prediction model based...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Ruiquan Ge Guanwen Feng Pu Wang Qiguang Miao School of Computer Science and Technology Hangzhou Dianzi University Zhejiang University Hangzhou Yiyitaidi Information Technology Co. Ltd. Hangzhou China Xi’an Key Laboratory of Big Data and Intelligent Vision School of Computer Science and Technology Xidian University Xi’an China Computer School Hubei University of Arts and Science Xiangyang China School of Computer Science and Technology Xidian University Xi’an China
In post-genomic era, the understanding of protein function has been seriously behind the development of sequencing technology. Experimental verification for protein function is difficult, time consuming and expensive.... 详细信息
来源: 评论
Ball k-means
arXiv
收藏 引用
arxiv 2020年
作者: xia, Shuyin Peng, Daowan Meng, Deyu Zhang, Changqing Wang, Guoyin Chen, Zizhong Wei, Wei Department of Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing400065 China National Engineering Laboratory for Algorithm and Analysis Technologiy on Big Data Xian Jiaotong University Xi'an710049 China College of Intelligence and Computing Tianjin University 300072 China Department of Computer Science and Engineering University of California Riverside 900 University Avenue RiversideCA92521 United States School of Computer Science and Engineering Xi'an University of Technology Xi'an710048 China
This paper presents a novel accelerated exact k-means algorithm called the Ball k-means algorithm, which uses a ball to describe a cluster, focusing on reducing the point-centroid distance computation. The Ball k-mean... 详细信息
来源: 评论