In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that t...
详细信息
In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that they play a meaningful role,and be demonstrated,especially the employment difficulties faced by the students,they need to be more concerned *** should take effective measures to them,and help needy students to solve the problems pertinently,and then make them back to normal *** article took Sichuan University,Jin Cheng College of computerscience and softwareengineering for example to research helping employment difficulties faced by *** practical work,we explored a classification for students from poor management,and use the bedroom and class structures difficult for students to demonstrate the platform,practical and effective measures to counselor part-time teacher two fold emotional care models.
Transfer learning is a valuable tool for the effective assistance of gastroenterologists in the powerful diagnosis of medical images with fast convergence. It also intends to minimize the time and estimated effort req...
详细信息
Transfer learning is a valuable tool for the effective assistance of gastroenterologists in the powerful diagnosis of medical images with fast convergence. It also intends to minimize the time and estimated effort required for improved gastrointestinal tract (GIT) diagnosis. GIT abnormalities are widely known to be fatal disorders leading to significant mortalities. It includes both upper and lower GIT disorders. The challenges of addressing GIT issues are complex and need significant study. Multiple challenges exist regarding computer-aided diagnosis (CAD) and endoscopy including a lack of annotated images, dark backgrounds, less contrast, noisy backgrounds, and irregular patterns. Deep learning and transfer learning have assisted gastroenterologists in effective diagnosis in various ways. The goal of proposed framework is the effective classification of endoscopic GIT images with enhanced accuracy. The proposed research aims to formulate a transfer learning-based deep ensemble model, accurately classifying GIT disorders for therapeutic purposes. The proposed model is based on weighted voting ensemble of the two state-of-the-art (STA) base models, NasNet-Mobile and EfficientNet. The extraction of regions of interest, specifically the sick portions, have been performed using images captured from endoscopic procedure. Performance evaluation of the proposed model is performed with cross-dataset evaluation. The datasets utilized include the training dataset HyperKvasir and two test datasets, Kvasir v1 and Kvasir v2. However, the dataset alone cannot create a robust model due to the unequal distribution of images across categories, making transfer learning a promising approach for model development. The evaluation of the proposed framework has been conducted by cross-dataset evaluation utilizing accuracy, precision, recall, Area under curve (AUC) score and F1 score performance metrics. The proposed work outperforms much of the existing transfer learning-based models giv
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of softwareengineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of softwareengineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Recent years have witnessed the rapid growth of social network services. Real-world social networks are huge and changing over time. Consequently, the problems in this area have become more complex. Community detectio...
详细信息
With the widespread global trend of voice phishing or vishing attacks, the development of effective detection models using artificial intelligence (AI) has been hindered by the lack of high-quality and large volumes o...
详细信息
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Recently, sparse-inertial human pose estimation (SI-HPE) with only a few IMUs has shown great potential in various fields. The most advanced work in this area achieved fairish results using only six IMUs. However, the...
详细信息
Automatic evaluation of hashtag recommendation models is a fundamental task in Twitter. In the traditional evaluation methods, the recommended hashtags from an algorithm are first compared with the ground truth hashta...
详细信息
暂无评论