咨询与建议

限定检索结果

文献类型

  • 432 篇 期刊文献
  • 394 篇 会议

馆藏范围

  • 826 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 588 篇 工学
    • 480 篇 计算机科学与技术...
    • 390 篇 软件工程
    • 112 篇 信息与通信工程
    • 53 篇 电气工程
    • 48 篇 网络空间安全
    • 46 篇 控制科学与工程
    • 37 篇 电子科学与技术(可...
    • 35 篇 生物工程
    • 24 篇 机械工程
    • 23 篇 安全科学与工程
    • 20 篇 光学工程
    • 15 篇 动力工程及工程热...
    • 15 篇 化学工程与技术
    • 15 篇 轻工技术与工程
    • 12 篇 仪器科学与技术
    • 12 篇 生物医学工程(可授...
    • 11 篇 土木工程
    • 11 篇 交通运输工程
  • 232 篇 理学
    • 137 篇 数学
    • 46 篇 生物学
    • 44 篇 物理学
    • 41 篇 统计学(可授理学、...
    • 24 篇 系统科学
    • 16 篇 化学
  • 137 篇 管理学
    • 84 篇 管理科学与工程(可...
    • 63 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 35 篇 法学
    • 24 篇 社会学
    • 12 篇 法学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 13 篇 军事学
  • 10 篇 医学
  • 9 篇 农学
  • 6 篇 教育学
  • 3 篇 文学

主题

  • 29 篇 privacy
  • 28 篇 semantics
  • 27 篇 blockchain
  • 23 篇 security
  • 21 篇 federated learni...
  • 18 篇 deep learning
  • 17 篇 codes
  • 17 篇 feature extracti...
  • 17 篇 accuracy
  • 16 篇 data privacy
  • 15 篇 cloud computing
  • 14 篇 cryptography
  • 13 篇 differential pri...
  • 13 篇 training
  • 12 篇 computational mo...
  • 12 篇 protocols
  • 12 篇 data models
  • 12 篇 robustness
  • 11 篇 machine learning
  • 10 篇 public key crypt...

机构

  • 165 篇 the state key la...
  • 104 篇 state key labora...
  • 76 篇 institute of blo...
  • 74 篇 state key labora...
  • 71 篇 data assurance a...
  • 70 篇 school of cyber ...
  • 53 篇 zhejiang univers...
  • 45 篇 university of ch...
  • 42 篇 state key labora...
  • 31 篇 college of compu...
  • 29 篇 state key labora...
  • 26 篇 zhejiang univers...
  • 20 篇 school of softwa...
  • 18 篇 state key labora...
  • 18 篇 data assurance a...
  • 18 篇 information secu...
  • 15 篇 singapore manage...
  • 15 篇 huawei
  • 15 篇 ant group
  • 14 篇 zhejiang univers...

作者

  • 37 篇 ren kui
  • 32 篇 song mingli
  • 23 篇 xia xin
  • 23 篇 qin zhan
  • 21 篇 yang xiaohu
  • 20 篇 tian youliang
  • 20 篇 youliang tian
  • 20 篇 hu xing
  • 19 篇 chen yuling
  • 18 篇 lin jingqiang
  • 17 篇 chen jiawei
  • 17 篇 chen chun
  • 17 篇 li yiming
  • 16 篇 chen gang
  • 16 篇 liu zhongxin
  • 16 篇 wang can
  • 15 篇 lo david
  • 14 篇 shou lidan
  • 14 篇 chen ke
  • 13 篇 xin xia

语言

  • 725 篇 英文
  • 96 篇 其他
  • 6 篇 中文
检索条件"机构=The state Key Laboratory of Blockchain and Data Security"
826 条 记 录,以下是1-10 订阅
排序:
E-PRedictor: an approach for early prediction of pull request acceptance
收藏 引用
Science China(Information Sciences) 2025年 第5期68卷 380-395页
作者: Kexing CHEN Lingfeng BAO Xing HU Xin XIA Xiaohu YANG State Key Laboratory of Blockchain and Data Security Zhejiang University Software Engineering Application Technology Lab
A pull request(PR) is an event in Git where a contributor asks project maintainers to review code he/she wants to merge into a project. The PR mechanism greatly improves the efficiency of distributed software developm... 详细信息
来源: 评论
EMTrig: Physical Adversarial Examples Triggered by Electromagnetic Injection towards LiDAR Perception  24
EMTrig: Physical Adversarial Examples Triggered by Electroma...
收藏 引用
22nd ACM Conference on Embedded Networked Sensor Systems, SenSys 2024
作者: Liu, Ziwei Lin, Feng Meng, Teshi Baha-Eddine, Benaouda Chouaib Lu, Li Xue, Qiang Ren, Kui Institute of Blockchain and Data Security Hangzhou China State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China
LiDAR sensors measure the environment by emitting lasers and, when combined with deep neural networks (DNNs), can effectively identify surrounding obstacles such as vehicles and pedestrians. Given its crucial role in ... 详细信息
来源: 评论
In Situ Neural Relational Schema Matcher  40
In Situ Neural Relational Schema Matcher
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Du, Xingyu Yuan, Gongsheng Wu, Sai Chen, Gang Lu, Peng Zhejiang University The State Key Laboratory of Blockchain and Data Security China
The scarcity of training data restricts a neural network from capturing schema diversity and intricacies, hindering schema-matching models' generalization capabilities. In this paper, we propose ISResMat, a framew... 详细信息
来源: 评论
SecPE: Secure Prompt Ensembling for Private and Robust Large Language Models  27
SecPE: Secure Prompt Ensembling for Private and Robust Large...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Zhang, Jiawen Chen, Kejia Feng, Zunlei Lou, Jian Song, Mingli State Key Laboratory of Blockchain and Data Security Zhejiang University China
With the growing popularity of LLMs among the general public users, privacy-preserving and adversarial robustness have become two pressing demands for LLM-based services, which have largely been pursued separately but... 详细信息
来源: 评论
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference  23
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Ruidong Yang, Siling Chen, Ping Zheng, Yi Huai, Baoxing Chen, Gang The State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Huawei Cloud China
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration  23
LeapGNN: Accelerating Distributed GNN Training Leveraging Fe...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Xuechen The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ... 详细信息
来源: 评论
Block-gram:Mining knowledgeable features for efficiently smart contract vulnerability detection
收藏 引用
Digital Communications and Networks 2025年 第1期11卷 1-12页
作者: Xueshuo Xie Haolong Wang Zhaolong Jian Yaozheng Fang Zichun Wang Tao Li Tianjin Key Laboratory of Network and Data Security Technology TianjinChina College of Computer Science Nankai UniversityTianjinChina Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province China State Key Laboratory of Computer Architecture Institute of Computing TechnologyChinese Academy of SciencesChina
Smart contracts are widely used on the blockchain to implement complex transactions,such as decentralized applications on *** vulnerability detection of large-scale smart contracts is critical,as attacks on smart cont... 详细信息
来源: 评论
Association Pattern-aware Fusion for Biological Entity Relationship Prediction  38
Association Pattern-aware Fusion for Biological Entity Relat...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Jia, Lingxiang Ying, Yuchen Feng, Zunlei Zhong, Zipeng Yao, Shaolun Hu, Jiacong Duan, Mingjiang Wang, Xingen Song, Jie Song, Mingli State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Bangsheng Technology Co Ltd. China
Deep learning-based methods significantly advance the exploration of associations among triple-wise biological entities (e.g., drug-target protein-adverse reaction), thereby facilitating drug discovery and safeguardin...
来源: 评论
Simple and Fast Distillation of Diffusion Models  38
Simple and Fast Distillation of Diffusion Models
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhou, Zhenyu Chen, Defang Wang, Can Chen, Chun Lyu, Siwei Zhejiang University State Key Laboratory of Blockchain and Data Security China Institute of Blockchain and Data Security China University at Buffalo State University of New York United States
Diffusion-based generative models have demonstrated their powerful performance across various tasks, but this comes at a cost of the slow sampling speed. To achieve both efficient and high-quality synthesis, various d...
来源: 评论
A2PO: Towards Effective Offline Reinforcement Learning from an Advantage-aware Perspective  38
A2PO: Towards Effective Offline Reinforcement Learning from ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Qing, Yunpeng Liu, Shunyu Cong, Jingyuan Chen, Kaixuan Zhou, Yihe Song, Mingli College of Computer Science and Technology Zhejiang University China State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China
Offline reinforcement learning endeavors to leverage offline datasets to craft effective agent policy without online interaction, which imposes proper conservative constraints with the support of behavior policies to ...
来源: 评论