咨询与建议

限定检索结果

文献类型

  • 152 篇 会议
  • 48 篇 期刊文献

馆藏范围

  • 200 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 医学
    • 46 篇 临床医学
    • 27 篇 特种医学
    • 21 篇 医学技术(可授医学...
    • 12 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
  • 45 篇 工学
    • 31 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 12 篇 光学工程
    • 11 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 电气工程
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 交通运输工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
  • 43 篇 理学
    • 22 篇 物理学
    • 20 篇 化学
    • 14 篇 生物学
    • 7 篇 数学
    • 4 篇 统计学(可授理学、...
  • 8 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 公共管理
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 44 篇 functional magne...
  • 22 篇 brain modeling
  • 21 篇 independent comp...
  • 20 篇 neuroimaging
  • 16 篇 schizophrenia
  • 16 篇 biomedical imagi...
  • 15 篇 correlation
  • 14 篇 feature extracti...
  • 13 篇 magnetic resonan...
  • 12 篇 biomarkers
  • 12 篇 deep learning
  • 12 篇 visualization
  • 12 篇 data models
  • 10 篇 signal processin...
  • 10 篇 electroencephalo...
  • 10 篇 engineering in m...
  • 10 篇 mental disorders
  • 8 篇 couplings
  • 8 篇 predictive model...
  • 8 篇 biological syste...

机构

  • 26 篇 tri-institutiona...
  • 23 篇 tri-institutiona...
  • 10 篇 tri-institutiona...
  • 9 篇 tri-institutiona...
  • 8 篇 department of co...
  • 8 篇 georgia state un...
  • 8 篇 department of co...
  • 7 篇 tri-institutiona...
  • 7 篇 tri-institutiona...
  • 7 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 georgia state un...
  • 5 篇 massachusetts ge...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...
  • 5 篇 wallace h. coult...
  • 5 篇 department of el...
  • 5 篇 harvard medical ...
  • 4 篇 dept. of csee un...

作者

  • 87 篇 vince d. calhoun
  • 35 篇 calhoun vince d.
  • 28 篇 armin iraji
  • 25 篇 vince d calhoun
  • 17 篇 robyn l. miller
  • 16 篇 vince calhoun
  • 15 篇 zening fu
  • 14 篇 jingyu liu
  • 12 篇 charles a. ellis
  • 11 篇 calhoun vince
  • 10 篇 iraji armin
  • 10 篇 tülay adali
  • 9 篇 jing sui
  • 8 篇 elaheh zendehrou...
  • 8 篇 ashkan faghiri
  • 8 篇 liu jingyu
  • 8 篇 ellis charles a.
  • 7 篇 tulay adali
  • 7 篇 yuhui du
  • 7 篇 bishal thapaliya

语言

  • 177 篇 英文
  • 23 篇 其他
检索条件"机构=Tri-Institutional Center for Translational Research in Neuroimaging and Data Science"
200 条 记 录,以下是11-20 订阅
排序:
Florbetapir Pet Uptake Differences in White Matter Across the Alzheimer's Disease Continuum: From Cognitively Normal to MCI and Dementia  22
Florbetapir Pet Uptake Differences in White Matter Across th...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Khasayeva, Nigar Jensen, Kyle M. Eierud, Cyrus Petropoulos, Helen Calhoun, Vince D. Iraji, Armin Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA United States
Alzheimer's disease (AD) is widely recognized for hallmark gray matter (GM) changes, including extracellular amyloid plaques and neurofibrillary tangles. However, recent neuroimaging research suggests that white m... 详细信息
来源: 评论
Dynamic Convergence of Multiple Overlapping Brain States as a Biomarker for Mental Disorders  22
Dynamic Convergence of Multiple Overlapping Brain States as ...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Soleimani, Najme Calhoun, Vince D. Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Atlanta GA United States
Exploring the biomarkers linked to various psychiatric disorders is essential for improving diagnostic accuracy and monitoring disease progression. Recent developments in neuroimaging techniques have shifted the empha... 详细信息
来源: 评论
Dynamic Fusion: Merging Structural and Functional Connectivity Dynamics Via Joint CMICA  22
Dynamic Fusion: Merging Structural and Functional Connectivi...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Wu, Lei Duda, Marlena Iraji, Armin Calhoun, Vince D. Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta 30303 GA United States
This study introduces 'dynamic fusion', a novel framework that bridges structural and functional connectivity in the context of dynamic reconfiguration, to illustrate how brain networks adapt over time. By com... 详细信息
来源: 评论
Advanced machine learning in neuroimaging studies via federated learning
Advanced machine learning in neuroimaging studies via federa...
收藏 引用
2024 IEEE International Conference on Big data, Bigdata 2024
作者: Basodi, Sunitha Romero, Javier Panta, Sandeep Martin, Dylan Plis, Sergey Sarwate, Anand D. Calhoun, Vince D. Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Rutgers University Department of Electrical & Computer Engineering NJ United States
Federated analysis can help perform large-scale analyses using neuroimaging datasets across various research groups overcoming the limitations of institutional data-sharing policies, privacy or regulatory concerns as ... 详细信息
来源: 评论
Improved Dictionary Learning for FMRI data Analysis Capturing Common and Individual Activation Maps  58
Improved Dictionary Learning for FMRI Data Analysis Capturin...
收藏 引用
58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
作者: Xu, Shuai Jin, Rui Kim, Seung-Jun Adali, Tülay Calhoun, Vince D. University of Maryland Baltimore County Department of Computer Science and Electrical Engineering United States Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology United States Emory University United States
A dictionary learning (DL)-based method for mul-tisubject functional magnetic resonance imaging (fMRI) data analysis is proposed. The method can incorporate group attributes to find the neural activation maps that are... 详细信息
来源: 评论
Sex Differences in Coupled Dynamic Functional Connectivity and Structural Brain Morphology: Insights from the ABCD Study  22
Sex Differences in Coupled Dynamic Functional Connectivity a...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Kotoski, Aline Wiafe, Sir-Lord Calhoun, Vince Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Atlanta United States Neuroscience Institute Georgia State University Atlanta United States Georgia State University Department of Computer Science Atlanta United States
This study investigates sex-based differences in brain structure-function coupling using a novel dynamic intermodality source coupling (dIMSC) method, which we use to integrate dynamic functional network connectivity ... 详细信息
来源: 评论
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG D...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging Data Science at Georgia State University Emory University and Georgia Institute of Technology
Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of transferring representations from large datasets with lower ... 详细信息
来源: 评论
SELF-Clustering Graph Transformer Approach to Model Resting State Functional Brain Activity  22
SELF-Clustering Graph Transformer Approach to Model Resting ...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Thapaliya, Bishal Akbas, Esra Sapkota, Ram Ray, Bhaskar Calhoun, Vince Liu, Jingyu Georgia State University Department of Computer Science Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta United States
Resting-state functional magnetic resonance imaging (rs-fMRI) offers valuable insights into the human brain's functional organization and is a powerful tool for investigating the relationship between brain functio... 详细信息
来源: 评论
Cross-Modal Synthesis of Structural MRI and Functional Connectivity Networks via Conditional ViT-GANs
arXiv
收藏 引用
arXiv 2023年
作者: Bi, Yuda Abrol, Anees Sui, Jing Calhoun, Vince Tri-institutional Center for Translational Research in Neuroimaging and Data Science GSU GATech Emory United States
The cross-modal synthesis between structural magnetic resonance imaging (sMRI) and functional network connectivity (FNC) is a relatively unexplored area in medical imaging, especially with respect to schizophrenia. Th... 详细信息
来源: 评论
Graph-based deep learning models in the prediction of early-stage Alzheimers  46
Graph-based deep learning models in the prediction of early-...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Thapaliya, Bishal Wu, Zundong Sapkota, Ram Ray, Bhaskar Suresh, Pranav Ghimire, Santosh Calhoun, Vince Liu, Jingyu Georgia State University Department of Computer Science Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta United States Tribhuvan University Department of Applied Sciences and Chemical Engineering Nepal
Alzheimer's disease is the most common age-related problem and progresses in different stages, from cognitively normal to early mild cognitive impairment, and severe dementia. This study investigates the predictiv... 详细信息
来源: 评论