咨询与建议

限定检索结果

文献类型

  • 152 篇 会议
  • 48 篇 期刊文献

馆藏范围

  • 200 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 医学
    • 46 篇 临床医学
    • 27 篇 特种医学
    • 21 篇 医学技术(可授医学...
    • 12 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
  • 45 篇 工学
    • 31 篇 生物医学工程(可授...
    • 23 篇 生物工程
    • 12 篇 光学工程
    • 11 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 电气工程
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 交通运输工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
  • 43 篇 理学
    • 22 篇 物理学
    • 20 篇 化学
    • 14 篇 生物学
    • 7 篇 数学
    • 4 篇 统计学(可授理学、...
  • 8 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 公共管理
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 44 篇 functional magne...
  • 22 篇 brain modeling
  • 21 篇 independent comp...
  • 20 篇 neuroimaging
  • 16 篇 schizophrenia
  • 16 篇 biomedical imagi...
  • 15 篇 correlation
  • 14 篇 feature extracti...
  • 13 篇 magnetic resonan...
  • 12 篇 biomarkers
  • 12 篇 deep learning
  • 12 篇 visualization
  • 12 篇 data models
  • 10 篇 signal processin...
  • 10 篇 electroencephalo...
  • 10 篇 engineering in m...
  • 10 篇 mental disorders
  • 8 篇 couplings
  • 8 篇 predictive model...
  • 8 篇 biological syste...

机构

  • 26 篇 tri-institutiona...
  • 23 篇 tri-institutiona...
  • 10 篇 tri-institutiona...
  • 9 篇 tri-institutiona...
  • 8 篇 department of co...
  • 8 篇 georgia state un...
  • 8 篇 department of co...
  • 7 篇 tri-institutiona...
  • 7 篇 tri-institutiona...
  • 7 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 georgia state un...
  • 5 篇 massachusetts ge...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...
  • 5 篇 wallace h. coult...
  • 5 篇 department of el...
  • 5 篇 harvard medical ...
  • 4 篇 dept. of csee un...

作者

  • 87 篇 vince d. calhoun
  • 35 篇 calhoun vince d.
  • 28 篇 armin iraji
  • 25 篇 vince d calhoun
  • 17 篇 robyn l. miller
  • 16 篇 vince calhoun
  • 15 篇 zening fu
  • 14 篇 jingyu liu
  • 12 篇 charles a. ellis
  • 11 篇 calhoun vince
  • 10 篇 iraji armin
  • 10 篇 tülay adali
  • 9 篇 jing sui
  • 8 篇 elaheh zendehrou...
  • 8 篇 ashkan faghiri
  • 8 篇 liu jingyu
  • 8 篇 ellis charles a.
  • 7 篇 tulay adali
  • 7 篇 yuhui du
  • 7 篇 bishal thapaliya

语言

  • 177 篇 英文
  • 23 篇 其他
检索条件"机构=Tri-Institutional Center for Translational Research in Neuroimaging and Data Science"
200 条 记 录,以下是21-30 订阅
排序:
Investigating the Impact of Habitual Sleep Quality on Episodic Memory Performance: An Eeg-Based Representational Similarity Analysis  22
Investigating the Impact of Habitual Sleep Quality on Episod...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Seraji, Masoud Mirjalili, Soroush Duarte, Audrey Calhoun, Vince D Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Atlanta GA United States School of Psychology University of Texas at Austin Austin United States
Sleep is crucial for episodic memory consolidation, yet the impact of habitual sleep quality on memory performance remains underexplored. This study investigates the relationship between sleep quality and episodic mem... 详细信息
来源: 评论
Replication and Refinement of Brain Age Model for Adolescent Development
Replication and Refinement of Brain Age Model for Adolescent...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Bhaskar Ray Jiayu Chen Zening Fu Pranav Suresh Bishal Thapaliya Britny Farahdel Vince D. Calhoun Jingyu Liu Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Atlanta USA Department of Computer Science Georgia State University Atlanta USA
The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusi... 详细信息
来源: 评论
Deep multimodal predictome for studying mental disorders (vol 44, pg 509, 2023)
收藏 引用
HUMAN BRAIN MAPPING 2023年 第14期44卷 4967-4967页
作者: Rahaman, M. A. Chen, J. Fu, Z. Lewis, N. Iraji, A. van Erp, T. G. M. Calhoun, V. D. Department of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta Georgia USA Clinical Translational Neuroscience Laboratory Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to... 详细信息
来源: 评论
A New Noisy Label Learning Method for Accurate Brain Age Prediction  22
A New Noisy Label Learning Method for Accurate Brain Age Pre...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Du, Yuhui Li, Ruotong Wang, Zheng Calhoun, Vince D. Shanxi University School of Computer and Information Technology Taiyuan China Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Atlanta GA United States
Brain age prediction using neuroimaging data is crucial for understanding the mechanisms of brain aging. However, many previous methods for predicting brain age have relied on chronological age as the guiding label fo... 详细信息
来源: 评论
Dynamic Convergence of Multiple Overlapping Brain States as a Biomarker for Mental Disorders
Dynamic Convergence of Multiple Overlapping Brain States as ...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Najme Soleimani Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA
Exploring the biomarkers linked to various psychiatric disorders is essential for improving diagnostic accuracy and monitoring disease progression. Recent developments in neuroimaging techniques have shifted the empha... 详细信息
来源: 评论
Correlation of Correlation Networks: High-Order Interactions in the Topology of Brain Networks
Correlation of Correlation Networks: High-Order Interactions...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Qiang Li Jingyu Liu Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State Georgia Tech and Emory University Atlanta GA United States
To understand collective network behavior in the complex human brain, pairwise correlation networks alone are insufficient for capturing the high-order interactions that extend beyond pairwise interactions and play a ... 详细信息
来源: 评论
The Dynamics of triple Interactions in Resting FMRI: Insights Into Psychotic Disorders  22
The Dynamics of Triple Interactions in Resting FMRI: Insight...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Li, Qiang Calhoun, Vince D. Mirzaeian, Shiva Iraji, Armin Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State Georgia Tech Emory University Atlanta 30303 GA United States Georgia State University Department of Computer Science Atlanta 30303 GA United States
The human brain dynamically integrated and configured information to adapt to the environment. To capture these changes over time, dynamic second-order functional connectivity was typically used to capture transient b... 详细信息
来源: 评论
Genetics Encoded Joint Embedding of Multimodal Connectomes with Explainable Graph Neural Network for Schizophrenia Classification  22
Genetics Encoded Joint Embedding of Multimodal Connectomes w...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Mazumder, Badhan Wu, Lei Calhoun, Vince D. Ye, Dong Hye Georgia State University Department of Computer Science Atlanta GA United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA United States
Investigating structural and functional brain connectivity is crucial for understanding neuropsychiatric disorders like schizophrenia (SZ), where genetic markers such as SNPs (single nucleotide polymorphisms) also pla... 详细信息
来源: 评论
Dynamic Fusion: Merging Structural and Functional Connectivity Dynamics Via Joint CMICA
Dynamic Fusion: Merging Structural and Functional Connectivi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Lei Wu Marlena Duda Armin Iraji Vince D. Calhoun Tri-institutional center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta Georgia
This study introduces ‘dynamic fusion’, a novel framework that bridges structural and functional connectivity in the context of dynamic reconfiguration, to illustrate how brain networks adapt over time. By combining... 详细信息
来源: 评论
Classification of Schizophrenia using Intrinsic Connectivity Networks and Incremental Boosting Convolution Neural Networks
Classification of Schizophrenia using Intrinsic Connectivity...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Duc My Vo Sergey Plis Vince D. Calhourn Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State Georgia Tech Emory University Atlanta GA USA
One of the key challenges in the use of resting brain functional magnetic resonance imaging (fMRI) network analysis for predicting mental illnesses such as schizophrenia (SZ) is the high noise levels variability among... 详细信息
来源: 评论