咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
  • 5 篇 理学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 4 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 1 篇 口腔医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 prediction model...
  • 2 篇 generative adver...
  • 1 篇 personalized med...
  • 1 篇 clinical decisio...
  • 1 篇 health promotion
  • 1 篇 image segmentati...
  • 1 篇 implementation s...
  • 1 篇 inflation
  • 1 篇 self-supervised ...
  • 1 篇 natural language...
  • 1 篇 large language m...
  • 1 篇 data science
  • 1 篇 population stati...
  • 1 篇 generative ai
  • 1 篇 artificial intel...
  • 1 篇 health equity
  • 1 篇 precision analyt...
  • 1 篇 epidemiology

机构

  • 2 篇 department of me...
  • 2 篇 eric and wendy s...
  • 2 篇 department of me...
  • 2 篇 department of co...
  • 2 篇 mit csail united...
  • 2 篇 bakar computatio...
  • 1 篇 institute of hea...
  • 1 篇 department of me...
  • 1 篇 department of bi...
  • 1 篇 institute for ex...
  • 1 篇 department of me...
  • 1 篇 department of po...
  • 1 篇 institute for co...
  • 1 篇 scripps research...
  • 1 篇 institute for hu...
  • 1 篇 department of ge...
  • 1 篇 department of bi...
  • 1 篇 cardiovascular r...
  • 1 篇 university of ca...
  • 1 篇 center for the s...

作者

  • 5 篇 arnaout rima
  • 3 篇 alaa ahmed
  • 3 篇 ferreira daniell...
  • 2 篇 chen irene y.
  • 2 篇 sontag david
  • 2 篇 philippakis anth...
  • 2 篇 demirel ilker
  • 1 篇 schölkopf bernha...
  • 1 篇 balzer laura b.
  • 1 篇 brazhnik olga
  • 1 篇 fumitaka inoue
  • 1 篇 krumholz harlan
  • 1 篇 hall jaclyn
  • 1 篇 murray david m.
  • 1 篇 holmes edward c.
  • 1 篇 sadaei hossein j...
  • 1 篇 fraser christoph...
  • 1 篇 li miao
  • 1 篇 ryan ziffra
  • 1 篇 gupta shalika

语言

  • 14 篇 英文
  • 1 篇 德文
  • 1 篇 其他
检索条件"机构=UCSF-UC Berkeley Program in Computational Precision Health"
15 条 记 录,以下是1-10 订阅
排序:
Generalized Venn and Venn-Abers Calibration with Applications in Conformal Prediction
arXiv
收藏 引用
arXiv 2025年
作者: van der Laan, Lars Alaa, Ahmed Department of Statistics University of Washington United States Computational Precision Health UC Berkeley and UCSF United States
Ensuring model calibration is critical for reliable predictions, yet popular distribution-free methods, such as histogram binning and isotonic regression, provide only asymptotic guarantees. We introduce a unified fra... 详细信息
来源: 评论
Are AI Foundation Models Efficient for Segmentation of Echocardiograms?
收藏 引用
Journal of the American Society of Echocardiography 2025年 第6期38卷 514-516页
作者: Ferreira, Danielle L. Arnaout, Rima Division of Cardiology Department of Medicine University of California San Francisco San Francisco California United States Bakar Computational Health Sciences Institute University of California San Francisco San Francisco California United States UCSF-UC Berkeley Joint Program in Computational Precision Health University of California San Francisco San Francisco California United States Center for Intelligent Imaging Department of Radiology University of California San Francisco San Francisco California United States
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Prediction-powered Generalization of Causal Inferences  41
Prediction-powered Generalization of Causal Inferences
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Demirel, Ilker Alaa, Ahmed Philippakis, Anthony Sontag, David MIT CSAIL United States Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard United States Department of Computational Precision Health UC Berkeley UCSF United States
Causal inferences from a randomized controlled trial (RCT) may not pertain to a target population where some effect modifiers have a different distribution. Prior work studies generalizing the results of a trial to a ... 详细信息
来源: 评论
A Narrative Review on the Application of Large Language Models to Support Cancer Care and Research
收藏 引用
Yearbook of medical informatics 2024年 第1期33卷 90-98页
作者: Benson, Ryzen Elia, Marianna Hyams, Benjamin Chang, Ji Hyun Hong, Julian C. Department of Radiation Oncology University of California San Francisco CA United States Bakar Computational Health Sciences Institute University of California San Francisco CA United States School of Medicine University of California San Francisco CA United States Department of Radiation Oncology Seoul National University Hospital Seoul National University College of Medicine Seoul South Korea UCSF UC Berkeley Joint Program in Computational Precision Health (CPH) San Francisco CA United States
OBJECTIVES: The emergence of large language models has resulted in a significant shift in informatics research and carries promise in clinical cancer care. Here we provide a narrative review of the recent use of large... 详细信息
来源: 评论
Prediction-powered Generalization of Causal Inferences
arXiv
收藏 引用
arXiv 2024年
作者: Demirel, Ilker Alaa, Ahmed Philippakis, Anthony Sontag, David MIT CSAIL United States Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard United States Department of Computational Precision Health UC Berkeley UCSF United States
Causal inferences from a randomized controlled trial (RCT) may not pertain to a target population where some effect modifiers have a different distribution. Prior work studies generalizing the results of a trial to a ... 详细信息
来源: 评论
Prediction-powered generalization of causal inferences  24
Prediction-powered generalization of causal inferences
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Ilker Demirel Ahmed Alaa Anthony Philippakis David Sontag MIT CSAIL and Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Department of Computational Precision Health UC Berkeley and UCSF Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard MIT CSAIL
Causal inferences from a randomized controlled trial (RCT) may not pertain to a target population where some effect modifiers have a different distribution. Prior work studies generalizing the results of a trial to a ...
来源: 评论
When exposure affects subgroup membership: Framing relevant causal questions in perinatal epidemiology and beyond
arXiv
收藏 引用
arXiv 2024年
作者: Gupta, Shalika Balzer, Laura B. Kamya, Moses R. Havlir, Diane V. Petersen, Maya L. Division of Epidemiology University of California Berkeley United States Division of Biostatistics University of California Berkeley United States Department of Medicine Makerere University College of Health Sciences Uganda Division of HIV Infectious Diseases and Global Medicine Department of Medicine University of California San Francisco United States UCSF-UC Berkeley Program in Computational Precision Health United States
Perinatal epidemiology often aims to evaluate exposures on infant outcomes. When the exposure affects the composition of people who give birth to live infants (e.g., by affecting fertility, behavior, or birth outcomes... 详细信息
来源: 评论
Grade Inflation in Generative Models
arXiv
收藏 引用
arXiv 2024年
作者: Nguyen, Phuc Li, Miao Morgan, Alexandra Arnaout, Rima Arnaout, Ramy BostonMA02215 United States The Department of Medicine The Bakar Computational Health Sciences Institute The UCSF UC Berkeley Joint Program for Computational Precision Health The University of California San Francisco San FranciscoCA94143 United States The Department of Pathology The Division of Clinical Informatics Department of Medicine BIDMC Harvard Medical School BostonMA02215 United States
Generative models hold great potential, but only if one can trust the evaluation of the data they generate. We show that many commonly used quality scores for comparing two-dimensional distributions of synthetic vs. g... 详细信息
来源: 评论
Are foundation models efficient for medical image segmentation?
arXiv
收藏 引用
arXiv 2023年
作者: Ferreira, Danielle L. Arnaout, Rima Department of Medicine Division of Cardiology Bakar Computational Health Sciences Institute University of California San Francisco 521 Parnassus Avenue San FranciscoCA94143 United States Department of Medicine Division of Cardiology Bakar Computational Health Sciences Institute UCSF-UC Berkeley Joint Program in Computational Precision Health Department of Radiology Center for Intelligent Imaging University of California San Francisco 521 Parnassus Ave Box 0124 San FranciscoCA94143 United States
Foundation models are experiencing a surge in popularity. The Segment Anything model (SAM) asserts an ability to segment a wide spectrum of objects but required supervised training at unprecedented scale. We compared ... 详细信息
来源: 评论