咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 27 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 8 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 12 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 生物学
  • 12 篇 管理学
    • 11 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 7 篇 semantics
  • 4 篇 natural language...
  • 3 篇 knowledge based ...
  • 3 篇 computational li...
  • 2 篇 indexes
  • 2 篇 transparency
  • 2 篇 search engines
  • 2 篇 contrastive lear...
  • 2 篇 left-sided displ...
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 anterior interve...
  • 2 篇 laser doppler an...
  • 2 篇 information stor...
  • 1 篇 similar measure
  • 1 篇 machine translat...
  • 1 篇 sweeps
  • 1 篇 springs
  • 1 篇 information syst...
  • 1 篇 reinforcement le...

机构

  • 9 篇 ubiquitous knowl...
  • 9 篇 ubiquitous knowl...
  • 3 篇 information cent...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 dept. of compute...
  • 2 篇 computer science...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 apptek gmbh
  • 2 篇 department of co...
  • 2 篇 trustworthy huma...
  • 2 篇 ubiquitous knowl...
  • 2 篇 information syst...
  • 2 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 institute for nu...

作者

  • 38 篇 gurevych iryna
  • 11 篇 zesch torsten
  • 5 篇 iryna gurevych
  • 5 篇 dagan ido
  • 5 篇 simpson edwin
  • 4 篇 eger steffen
  • 4 篇 daxenberger joha...
  • 4 篇 schiller benjami...
  • 4 篇 kuznetsov ilia
  • 3 篇 stowe kevin
  • 3 篇 reimers nils
  • 3 篇 gao yang
  • 3 篇 levy omer
  • 3 篇 kramer stefan
  • 3 篇 chris biemann
  • 2 篇 biemann chris
  • 2 篇 frank anette
  • 2 篇 waldis andreas
  • 2 篇 habernal ivan
  • 2 篇 miyao yusuke

语言

  • 64 篇 英文
  • 2 篇 其他
检索条件"机构=Ubiquitous Knowledge Processing Lab Department of Computer Science"
66 条 记 录,以下是11-20 订阅
排序:
Annotation Error Detection: Analyzing the Past and Present for a More Coherent Future
arXiv
收藏 引用
arXiv 2022年
作者: Klie, Jan-Christoph Webber, Bonnie Gurevych, Iryna Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany School of Informatics University of Edinburgh United Kingdom UKP Lab TU Darmstadt Germany
Annotated data is an essential ingredient in natural language processing for training and evaluating machine learning models. It is therefore very desirable for the annotations to be of high quality. Recent work, howe... 详细信息
来源: 评论
Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets
arXiv
收藏 引用
arXiv 2022年
作者: Schiller, Benjamin Daxenberger, Johannes Waldis, Andreas Gurevych, Iryna Summetix GmbH Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Information Systems Research Lab Lucerne University of Applied Sciences and Arts Switzerland
Topic-Dependent Argument Mining (TDAM), that is extracting and classifying argument components for a specific topic from large document sources, is an inherently difficult task for machine learning models and humans a... 详细信息
来源: 评论
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
arXiv
收藏 引用
arXiv 2022年
作者: Daheim, Nico Thulke, David Dugast, Christian Ney, Hermann Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Human Language Technology and Pattern Recognition RWTH Aachen University Germany AppTek GmbH Germany
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes' theorem. One component is a traditional ungrounded response generatio...
来源: 评论
Focusing knowledge-based graph argument mining via topic modeling
arXiv
收藏 引用
arXiv 2021年
作者: Abels, Patrick Ahmadi, Zahra Burkhardt, Sophie Schiller, Benjamin Gurevych, Iryna Kramer, Stefan Johannes Gutenberg University Mainz Germany Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany
Decision-making usually takes five steps: identifying the problem, collecting data, extracting evidence, identifying pro and con arguments, and making decisions. Focusing on extracting evidence, this paper presents a ... 详细信息
来源: 评论
Scientia Potentia Est - On the Role of knowledge in Computational Argumentation
arXiv
收藏 引用
arXiv 2021年
作者: Lauscher, Anne Wachsmuth, Henning Gurevych, Iryna Glavaš, Goran MilaNLP Bocconi University Italy Department of Computer Science Paderborn University Germany Ubiquitous Knowledge Processing Lab TU Darmstadt Germany CAIDAS University of Würzburg Germany
Despite extensive research efforts in recent years, computational argumentation (CA) remains one of the most challenging areas of natural language processing. The reason for this is the inherent complexity of the cogn... 详细信息
来源: 评论
Learning Fair Representations through Uniformly Distributed Sensitive Attributes
Learning Fair Representations through Uniformly Distributed ...
收藏 引用
Secure and Trustworthy Machine Learning (SaTML), IEEE Conference on
作者: Patrik Joslin Kenfack Adín Ramírez Rivera Adil Mehmood Khan Manuel Mazzara Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia Department of Informatics Digital Signal Processing and Image Analysis (DSB) group University of Oslo Oslo Norway School of Computer Science University of Hull Hull UK Institute of Software Development and Engineering Innopolis University Innopolis Russia
Machine Learning (ML) models trained on biased data can reproduce and even amplify these biases. Since such models are deployed to make decisions that can affect people's lives, ensuring their fairness is critical...
来源: 评论
Does my rebuttal matter? Insights from a major NLP conference
Does my rebuttal matter? Insights from a major NLP conferenc...
收藏 引用
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019
作者: Gao, Yang Eger, Steffen Kuznetsov, Ilia Gurevych, Iryna Miyao, Yusuke Ubiquitous Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt Germany Department of Computer Science Graduate School of Information Science and Technology University of Tokyo Japan
Peer review is a core element of the scientific process, particularly in conference-centered fields such as ML and NLP. However, only few studies have evaluated its properties empirically. Aiming to fill this gap, we ... 详细信息
来源: 评论
Multi-task learning for argumentation mining
arXiv
收藏 引用
arXiv 2019年
作者: Eger, Steffen Gurevych, Iryna Computer Science Department Ubiquitous Knowledge Processing
Multi-task learning has recently become a very active field in deep learning research. In contrast to learning a single task in isolation, multiple tasks are learned at the same time, thereby utilizing the training si... 详细信息
来源: 评论
Bayesian heatmaps: Probabilistic classification with multiple unreliable information sources
arXiv
收藏 引用
arXiv 2019年
作者: Simpson, Edwin Reece, Steven Roberts, Stephen J. Ubiquitous Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt Department of Engineering Science University of Oxford
Unstructured data from diverse sources, such as social media and aerial imagery, can provide valuable up-to-date information for intelligent situation assessment. Mining these different information sources could bring... 详细信息
来源: 评论
Scalable Bayesian Preference Learning for Crowds
arXiv
收藏 引用
arXiv 2019年
作者: Simpson, Edwin Gurevych, Iryna Ubiquitous Knowledge Processing Lab Dept. of Computer Science Technische Universität Darmstadt
We propose a scalable Bayesian preference learning method for jointly predicting the preferences of individuals as well as the consensus of a crowd from pairwise labels. Peoples’ opinions often differ greatly, making... 详细信息
来源: 评论