咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 27 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 8 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 12 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 生物学
  • 12 篇 管理学
    • 11 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 7 篇 semantics
  • 4 篇 natural language...
  • 3 篇 knowledge based ...
  • 3 篇 computational li...
  • 2 篇 indexes
  • 2 篇 transparency
  • 2 篇 search engines
  • 2 篇 contrastive lear...
  • 2 篇 left-sided displ...
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 anterior interve...
  • 2 篇 laser doppler an...
  • 2 篇 information stor...
  • 1 篇 similar measure
  • 1 篇 machine translat...
  • 1 篇 sweeps
  • 1 篇 springs
  • 1 篇 information syst...
  • 1 篇 reinforcement le...

机构

  • 9 篇 ubiquitous knowl...
  • 9 篇 ubiquitous knowl...
  • 3 篇 information cent...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 dept. of compute...
  • 2 篇 computer science...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 apptek gmbh
  • 2 篇 department of co...
  • 2 篇 trustworthy huma...
  • 2 篇 ubiquitous knowl...
  • 2 篇 information syst...
  • 2 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 institute for nu...

作者

  • 38 篇 gurevych iryna
  • 11 篇 zesch torsten
  • 5 篇 iryna gurevych
  • 5 篇 dagan ido
  • 5 篇 simpson edwin
  • 4 篇 eger steffen
  • 4 篇 daxenberger joha...
  • 4 篇 schiller benjami...
  • 4 篇 kuznetsov ilia
  • 3 篇 stowe kevin
  • 3 篇 reimers nils
  • 3 篇 gao yang
  • 3 篇 levy omer
  • 3 篇 kramer stefan
  • 3 篇 chris biemann
  • 2 篇 biemann chris
  • 2 篇 frank anette
  • 2 篇 waldis andreas
  • 2 篇 habernal ivan
  • 2 篇 miyao yusuke

语言

  • 64 篇 英文
  • 2 篇 其他
检索条件"机构=Ubiquitous Knowledge Processing Lab Department of Computer Science"
66 条 记 录,以下是31-40 订阅
排序:
A Bayesian Approach for Sequence Tagging with Crowds
arXiv
收藏 引用
arXiv 2018年
作者: Simpson, Edwin Gurevych, Iryna Department of Computer Science Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt
Current methods for sequence tagging, a core task in NLP, are data hungry, which motivates the use of crowdsourcing as a cheap way to obtain labelled data. However, annotators are often unreliable and current aggregat... 详细信息
来源: 评论
Analysing domain suitability of a sentiment lexicon by identifying distributionally bipolar words  6
Analysing domain suitability of a sentiment lexicon by ident...
收藏 引用
6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2015 at the 2015 Conference on Empirical Methods in Natural Language processing, EMNLP 2015
作者: Flekova, Lucie Ruppert, Eugen Preoţiuc-Pietro, Daniel Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt Germany FG Language Technology Technische Universität Darmstadt Germany Computer and Information Science University of Pennsylvania United States
Contemporary sentiment analysis approaches rely heavily on lexicon based methods. This is mainly due to their simplicity, although the best empirical results can be achieved by more complex techniques. We introduce a ... 详细信息
来源: 评论
Hierarchy identification for automatically generating table-of-contents
Hierarchy identification for automatically generating table-...
收藏 引用
9th International Conference on Recent Advances in Natural Language processing, RANLP 2013
作者: Erbs, Nicolai Gurevych, Iryna Zesch, Torsten Ubiquitous Knowledge Processing Lab. Department of Computer Science Technische Universität Darmstadt Germany Information Center for Education German Institute for Educational Research and Educational Information Germany Language Technology University of Duisburg-Essen Germany
A table-of-contents (TOC) provides a quick reference to a document's content and structure. We present the first study on identifying the hierarchical structure for automatically generating a TOC using only textua... 详细信息
来源: 评论
Bayesian heatmaps: Probabilistic classification with multiple unreliable information sources
arXiv
收藏 引用
arXiv 2019年
作者: Simpson, Edwin Reece, Steven Roberts, Stephen J. Ubiquitous Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt Department of Engineering Science University of Oxford
Unstructured data from diverse sources, such as social media and aerial imagery, can provide valuable up-to-date information for intelligent situation assessment. Mining these different information sources could bring... 详细信息
来源: 评论
Scalable Bayesian Preference Learning for Crowds
arXiv
收藏 引用
arXiv 2019年
作者: Simpson, Edwin Gurevych, Iryna Ubiquitous Knowledge Processing Lab Dept. of Computer Science Technische Universität Darmstadt
We propose a scalable Bayesian preference learning method for jointly predicting the preferences of individuals as well as the consensus of a crowd from pairwise labels. Peoples’ opinions often differ greatly, making... 详细信息
来源: 评论
DP-Rewrite: Towards Reproducibility and Transparency in Differentially Private Text Rewriting
arXiv
收藏 引用
arXiv 2022年
作者: Igamberdiev, Timour Arnold, Thomas Habernal, Ivan Trustworthy Human Language Technologies Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany
Text rewriting with differential privacy (DP) provides concrete theoretical guarantees for protecting the privacy of individuals in textual documents. In practice, existing systems may lack the means to validate their... 详细信息
来源: 评论
Are Emergent Abilities in Large Language Models just In-Context Learning?
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Sheng Bigoulaeva, Irina Sachdeva, Rachneet Madabushi, Harish Tayyar Gurevych, Iryna Ubiquitous Knowledge Processing Lab Technical University of Darmstadt Germany Department of Computer Science The University of Bath United Kingdom
Large language models, comprising billions of parameters and pre-trained on extensive web-scale corpora, have been claimed to acquire certain capabilities without having been specifically trained on them. These capabi... 详细信息
来源: 评论
Focusing knowledge-based graph argument mining via topic modeling
arXiv
收藏 引用
arXiv 2021年
作者: Abels, Patrick Ahmadi, Zahra Burkhardt, Sophie Schiller, Benjamin Gurevych, Iryna Kramer, Stefan Johannes Gutenberg University Mainz Germany Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany
Decision-making usually takes five steps: identifying the problem, collecting data, extracting evidence, identifying pro and con arguments, and making decisions. Focusing on extracting evidence, this paper presents a ... 详细信息
来源: 评论
Fine-tuned neural models for Propaganda Detection at the sentence and fragment levels
arXiv
收藏 引用
arXiv 2019年
作者: Alhindi, Tariq Pfeiffer, Jonas Muresan, Smaranda Department of Computer Science Columbia University Data Science Institute Columbia University Ubiquitous Knowledge Processing Lab Technische Universitat Darmstadt
This paper presents the CUNLP submission for the NLP4IF 2019 shared-task on Fine-Grained Propaganda Detection. Our system finished 5th out of 26 teams on the sentence-level classification task and 5th out of 11 teams ... 详细信息
来源: 评论
Does my rebuttal matter? Insights from a major NLP conference
arXiv
收藏 引用
arXiv 2019年
作者: Gao, Yang Eger, Steffen Kuznetsov, Ilia Gurevych, Iryna Miyao, Yusuke Ubiquitous Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt Department of Computer Science Graduate School of Information Science and Technology University of Tokyo
Peer review is a core element of the scientific process, particularly in conference-centered fields such as ML and NLP. However, only few studies have evaluated its properties empirically. Aiming to fill this gap, we ... 详细信息
来源: 评论