咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 27 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 8 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 12 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 生物学
  • 12 篇 管理学
    • 11 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 7 篇 semantics
  • 4 篇 natural language...
  • 3 篇 knowledge based ...
  • 3 篇 computational li...
  • 2 篇 indexes
  • 2 篇 transparency
  • 2 篇 search engines
  • 2 篇 contrastive lear...
  • 2 篇 left-sided displ...
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 anterior interve...
  • 2 篇 laser doppler an...
  • 2 篇 information stor...
  • 1 篇 similar measure
  • 1 篇 machine translat...
  • 1 篇 sweeps
  • 1 篇 springs
  • 1 篇 information syst...
  • 1 篇 reinforcement le...

机构

  • 9 篇 ubiquitous knowl...
  • 9 篇 ubiquitous knowl...
  • 3 篇 information cent...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 dept. of compute...
  • 2 篇 computer science...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 apptek gmbh
  • 2 篇 department of co...
  • 2 篇 trustworthy huma...
  • 2 篇 ubiquitous knowl...
  • 2 篇 information syst...
  • 2 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 institute for nu...

作者

  • 38 篇 gurevych iryna
  • 11 篇 zesch torsten
  • 5 篇 iryna gurevych
  • 5 篇 dagan ido
  • 5 篇 simpson edwin
  • 4 篇 eger steffen
  • 4 篇 daxenberger joha...
  • 4 篇 schiller benjami...
  • 4 篇 kuznetsov ilia
  • 3 篇 stowe kevin
  • 3 篇 reimers nils
  • 3 篇 gao yang
  • 3 篇 levy omer
  • 3 篇 kramer stefan
  • 3 篇 chris biemann
  • 2 篇 biemann chris
  • 2 篇 frank anette
  • 2 篇 waldis andreas
  • 2 篇 habernal ivan
  • 2 篇 miyao yusuke

语言

  • 64 篇 英文
  • 2 篇 其他
检索条件"机构=Ubiquitous Knowledge Processing Lab Department of Computer Science"
66 条 记 录,以下是41-50 订阅
排序:
UKP-SQUARE: An Online Platform for Question Answering Research
arXiv
收藏 引用
arXiv 2022年
作者: Baumgärtner, Tim Wang, Kexin Sachdeva, Rachneet Eichler, Max Geigle, Gregor Poth, Clifton Sterz, Hannah Puerto, Haritz Ribeiro, Leonardo F.R. Pfeiffer, Jonas Reimers, Nils Şahin, Gözde Gül Gurevych, Iryna Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Hugging Face Koç University Computer Science and Engineering Department Turkey
Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g.,... 详细信息
来源: 评论
Sweeping through the Topic Space: Bad luck? Roll again!  12
Sweeping through the Topic Space: Bad luck? Roll again!
收藏 引用
Conference of The European Chapter of The Association for Computational Linguistics
作者: Martin Riedl Chris Biemann Ubiquitous Knowledge Processing Lab Computer Science Department Technische Universitaet Darmstadt Hochschulstrasse 10 D-64289 Darmstadt Germany
Topic Models (TM) such as Latent Dirich-let Allocation (LDA) are increasingly used in Natural Language processing applications. At this, the model parameters and the influence of randomized sampling and inference are ... 详细信息
来源: 评论
TopicTiling: A Text Segmentation Algorithm based on LDA  12
TopicTiling: A Text Segmentation Algorithm based on LDA
收藏 引用
Student Research Workshop
作者: Martin Riedl Chris Biemann Ubiquitous Knowledge Processing Lab Computer Science Department Technische Universitaet Darmstadt Hochschulstrasse 10 D-64289 Darmstadt Germany
This work presents a Text Segmentation algorithm called TopicTiling. This algorithm is based on the well-known TextTiling algorithm, and segments documents using the Latent Dirichlet Allocation (LDA) topic model. We s... 详细信息
来源: 评论
Ranking Creative Language Characteristics in Small Data Scenarios  13
Ranking Creative Language Characteristics in Small Data Scen...
收藏 引用
13th International Conference on Computational Creativity, ICCC 2022
作者: Siekiera, Julia Köppel, Marius Simpson, Edwin Stowe, Kevin Gurevych, Iryna Kramer, Stefan Dept. of Computer Science Johannes Gutenberg-Universität Mainz Germany Institute for Nuclear Physics Johannes Gutenberg-Universität Mainz Germany Dept. of Computer Science University of Bristol United Kingdom Ubiquitous Knowledge Processing Lab. Technische Universität Darmstadt Germany
The ability to rank creative natural language provides an important general tool for downstream language understanding and generation. However, current deep ranking models require substantial amounts of labeled data t... 详细信息
来源: 评论
Revisiting joint modeling of cross-document entity and event coreference resolution
arXiv
收藏 引用
arXiv 2019年
作者: Barhom, Shany Shwartz, Vered Eirew, Alon Bugert, Michael Reimers, Nils Dagan, Ido Computer Science Department Bar-Ilan University Intel AI Lab Israel Ubiquitous Knowledge Processing Lab Technische Universitat Darmstadt Germany
Recognizing coreferring events and entities across multiple texts is crucial for many NLP applications. Despite the task's importance, research focus was given mostly to withindocument entity coreference, with rat...
来源: 评论
Constrained C-Test Generation via Mixed-Integer Programming
arXiv
收藏 引用
arXiv 2024年
作者: Lee, Ji-Ung Pfetsch, Marc E. Gurevych, Iryna Ubiquitous Knowledge Processing Lab Department of Computer Science Germany Research Group Optimization Department of Mathematics Technical University of Darmstadt Germany Hessian AI
This work proposes a novel method to generate C-Tests;a deviated form of cloze tests (a gap filling exercise) where only the last part of a word is turned into a gap. In contrast to previous works that only consider v... 详细信息
来源: 评论
On the linearity of semantic change: Investigating meaning variation via dynamic graph models
arXiv
收藏 引用
arXiv 2017年
作者: Eger, Steffen Mehler, Alexander Ubiquitous Knowledge Processing Lab Department of Computer Science Technische Universität Darmstadt Germany Text Technology Lab Department of Computer Science Goethe-Universität Frankfurt am Main Germany
We consider two graph models of semantic change. The first is a time-series model that relates embedding vectors from one time period to embedding vectors of previous time periods. In the second, we construct one grap... 详细信息
来源: 评论
Lecture Notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2013年 8105 LNAI卷 VII-VIII页
作者: Gurevych, Iryna Biemann, Chris Zesch, Torsten Ubiquitous Knowledge Processing Lab. Department of Computer Science Technische Universität Darmstadt Darmstadt Germany Frankfurt am Main Germany FG Language Technology Department of Computer Science Technische Universität Darmstadt Darmstadt Germany
来源: 评论
Annotation Error Detection: Analyzing the Past and Present for a More Coherent Future
arXiv
收藏 引用
arXiv 2022年
作者: Klie, Jan-Christoph Webber, Bonnie Gurevych, Iryna Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany School of Informatics University of Edinburgh United Kingdom UKP Lab TU Darmstadt Germany
Annotated data is an essential ingredient in natural language processing for training and evaluating machine learning models. It is therefore very desirable for the annotations to be of high quality. Recent work, howe... 详细信息
来源: 评论
Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets
arXiv
收藏 引用
arXiv 2022年
作者: Schiller, Benjamin Daxenberger, Johannes Waldis, Andreas Gurevych, Iryna Summetix GmbH Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Information Systems Research Lab Lucerne University of Applied Sciences and Arts Switzerland
Topic-Dependent Argument Mining (TDAM), that is extracting and classifying argument components for a specific topic from large document sources, is an inherently difficult task for machine learning models and humans a... 详细信息
来源: 评论