咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 27 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 66 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 8 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 12 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 生物学
  • 12 篇 管理学
    • 11 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 7 篇 semantics
  • 4 篇 natural language...
  • 3 篇 knowledge based ...
  • 3 篇 computational li...
  • 2 篇 indexes
  • 2 篇 transparency
  • 2 篇 search engines
  • 2 篇 contrastive lear...
  • 2 篇 left-sided displ...
  • 2 篇 crowdsourcing
  • 2 篇 bayesian network...
  • 2 篇 anterior interve...
  • 2 篇 laser doppler an...
  • 2 篇 information stor...
  • 1 篇 similar measure
  • 1 篇 machine translat...
  • 1 篇 sweeps
  • 1 篇 springs
  • 1 篇 information syst...
  • 1 篇 reinforcement le...

机构

  • 9 篇 ubiquitous knowl...
  • 9 篇 ubiquitous knowl...
  • 3 篇 information cent...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 3 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 dept. of compute...
  • 2 篇 computer science...
  • 2 篇 ubiquitous knowl...
  • 2 篇 department of co...
  • 2 篇 apptek gmbh
  • 2 篇 department of co...
  • 2 篇 trustworthy huma...
  • 2 篇 ubiquitous knowl...
  • 2 篇 information syst...
  • 2 篇 ubiquitous knowl...
  • 2 篇 ubiquitous knowl...
  • 2 篇 institute for nu...

作者

  • 38 篇 gurevych iryna
  • 11 篇 zesch torsten
  • 5 篇 iryna gurevych
  • 5 篇 dagan ido
  • 5 篇 simpson edwin
  • 4 篇 eger steffen
  • 4 篇 daxenberger joha...
  • 4 篇 schiller benjami...
  • 4 篇 kuznetsov ilia
  • 3 篇 stowe kevin
  • 3 篇 reimers nils
  • 3 篇 gao yang
  • 3 篇 levy omer
  • 3 篇 kramer stefan
  • 3 篇 chris biemann
  • 2 篇 biemann chris
  • 2 篇 frank anette
  • 2 篇 waldis andreas
  • 2 篇 habernal ivan
  • 2 篇 miyao yusuke

语言

  • 64 篇 英文
  • 2 篇 其他
检索条件"机构=Ubiquitous Knowledge Processing Lab Department of Computer Science"
66 条 记 录,以下是61-70 订阅
排序:
Corrigendum to Unsupervised Latent Dirichlet Allocation for supervised question classification. [Information processing & Management, 54(3), 380-393]
收藏 引用
Information processing & Management 2019年 第3期56卷 1080-1080页
作者: Saeedeh Momtazi Iryna Gurevych Department of Computer Engineering and Information Technology Amirkabir University of Technology Tehran Iran Ubiquitous Knowledge Processing (UKP) Lab TU Darmstadt
来源: 评论
A semi-informative aware approach using topic model for medical search
A semi-informative aware approach using topic model for medi...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Qinmin Vivian Hu Liang He Mingyao Li Jimmy Xiangji Huang E. Mark Haacke Shanghai Key Laboratory of Multidimensional Information Processing MR Research Facility Wayne State University Detroit MI USA Department of Computer Science & Technology East China Normal University Shanghai China Information Retrieval and Knowledge Management Research Lab York University Toronto Canada
We propose a semi-informative aware approach using the topic model on query expansion problem in the biomedicine domain. the demographics and disease information is applied to semi-structure the topic model as the “k... 详细信息
来源: 评论
How to Best Predict the Daily Number of New Infections of Covid-19
arXiv
收藏 引用
arXiv 2020年
作者: Skiera, Bernd Jürgensmeier, Lukas Stowe, Kevin Gurevych, Iryna Board of EFL Data Science Institute Goethe University Frankfurt Theodor-W.-Adorno-Platz 4 Frankfurt60629 Germany Deakin University Australia Graduate School of Economics Finance and Management Goethe University Frankfurt Frankfurt60629 Germany Ubiquitous Processing Lab Computer Science Department Technical University of Darmstadt Hochschulstrasse 10 Darmstadt64289 Germany
knowledge about the daily number of new infections of Covid-19 is important because it is the basis for political decisions resulting in lockdowns and urgent health care measures. We use Germany as an example to illus...
来源: 评论
Learning Fair Representations through Uniformly Distributed Sensitive Attributes
Learning Fair Representations through Uniformly Distributed ...
收藏 引用
Secure and Trustworthy Machine Learning (SaTML), IEEE Conference on
作者: Patrik Joslin Kenfack Adín Ramírez Rivera Adil Mehmood Khan Manuel Mazzara Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia Department of Informatics Digital Signal Processing and Image Analysis (DSB) group University of Oslo Oslo Norway School of Computer Science University of Hull Hull UK Institute of Software Development and Engineering Innopolis University Innopolis Russia
Machine Learning (ML) models trained on biased data can reproduce and even amplify these biases. Since such models are deployed to make decisions that can affect people's lives, ensuring their fairness is critical...
来源: 评论
iSplit LBI: Individualized partial ranking with ties via split LBI
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Qianqian Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS Microsoft Research Asia State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences Key Laboratory of Big Data Mining and Knowledge Management CAS Peng Cheng Laboratory Department of Mathematics Hong Kong University of Science and Technology Hong Kong
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论