咨询与建议

限定检索结果

文献类型

  • 344 篇 期刊文献
  • 65 篇 会议
  • 1 册 图书

馆藏范围

  • 410 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 227 篇 理学
    • 73 篇 生物学
    • 68 篇 物理学
    • 55 篇 数学
    • 39 篇 地球物理学
    • 25 篇 统计学(可授理学、...
    • 18 篇 化学
    • 16 篇 系统科学
    • 8 篇 大气科学
  • 221 篇 工学
    • 97 篇 计算机科学与技术...
    • 79 篇 软件工程
    • 46 篇 生物医学工程(可授...
    • 40 篇 生物工程
    • 26 篇 光学工程
    • 22 篇 电气工程
    • 20 篇 仪器科学与技术
    • 20 篇 信息与通信工程
    • 18 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 航空宇航科学与技...
    • 10 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
  • 94 篇 医学
    • 73 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 30 篇 公共卫生与预防医...
    • 24 篇 药学(可授医学、理...
  • 43 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 18 篇 农学
  • 10 篇 法学
    • 10 篇 社会学
  • 10 篇 教育学
  • 4 篇 经济学
  • 1 篇 文学

主题

  • 10 篇 machine learning
  • 9 篇 genome-wide asso...
  • 7 篇 covid-19
  • 7 篇 deep learning
  • 6 篇 cosmological par...
  • 6 篇 decision making
  • 6 篇 large scale stru...
  • 5 篇 support vector m...
  • 5 篇 galaxies
  • 5 篇 dark matter
  • 5 篇 dark energy
  • 5 篇 gamma rays
  • 4 篇 supernovae
  • 4 篇 risk factors
  • 4 篇 self-supervised ...
  • 4 篇 tumors
  • 3 篇 image enhancemen...
  • 3 篇 surveys
  • 3 篇 cosmic ray propa...
  • 3 篇 image segmentati...

机构

  • 11 篇 department of el...
  • 10 篇 department of in...
  • 10 篇 computer science...
  • 10 篇 hourani center f...
  • 10 篇 school of comput...
  • 10 篇 meu research uni...
  • 9 篇 department of ph...
  • 9 篇 department of ap...
  • 9 篇 sron netherlands...
  • 8 篇 department of da...
  • 8 篇 department of as...
  • 8 篇 department of ap...
  • 8 篇 school of scienc...
  • 8 篇 riken cluster fo...
  • 8 篇 faculty of physi...
  • 8 篇 faculty of scien...
  • 8 篇 hiroshima astrop...
  • 8 篇 department of ph...
  • 8 篇 department of ph...
  • 8 篇 universitat de b...

作者

  • 11 篇 de neve wesley
  • 11 篇 abualigah laith
  • 10 篇 pottschmidt katj...
  • 9 篇 uchida hiroyuki
  • 9 篇 kilbourne caroli...
  • 9 篇 tamura keisuke
  • 9 篇 okajima takashi
  • 9 篇 murakami hiroshi
  • 9 篇 markevitch maxim
  • 9 篇 yamaguchi hiroya
  • 9 篇 watanabe shin
  • 9 篇 loewenstein mich...
  • 9 篇 hornschemeier an...
  • 9 篇 enoto teruaki
  • 9 篇 tanimoto atsushi
  • 9 篇 terashima yuichi
  • 9 篇 fujita yutaka
  • 9 篇 yamada satoshi
  • 9 篇 ota naomi
  • 9 篇 ness jan-uwe

语言

  • 320 篇 英文
  • 87 篇 其他
  • 3 篇 中文
检索条件"机构=Unit for Data Center Systems and Applied Data Science"
410 条 记 录,以下是181-190 订阅
Informal caregivers' attitudes and compliance towards a connected health platform for home care support: Insights from a long-term exposure
收藏 引用
Gerontechnology 2019年 第4期18卷 231-242页
作者: Guisado-Fernández, Estefanía Giunti, Guido Mackey, Laura Silva, Paula Alexandra Blake, Catherine Caulfield, Brian Insight Centre for Data Analytics University College Dublin 3rd floor O'Brien Science Building East Dublin Ireland M3S Research Unit Faculty of Information Technology and Electrical Engineering University of Oulu Oulu Finland School of Public Health Physiotherapy and Sports Science University College Dublin Dublin Ireland Department of Computer Science Center for Informatics and Systems of the University of Coimbra (CISUC) University of Coimbra Coimbra Portugal
Background When designing Connected Health (CH) solutions for home care, it is vital to focus on usability and user experience to ensure that technologies are easy to use and meet users' expectations and needs. Ge... 详细信息
来源: 评论
Citizen science in environmental and ecological sciences
NATURE REVIEWS METHODS PRIMERS
收藏 引用
NATURE REVIEWS METHODS PRIMERS 2022年 第1期2卷 1-20页
作者: Morneau, Dominique Novel Data Ecosystems for Sustainability Research Group Advancing Systems Analysis Program International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria Centre d’écologie et des sciences de la conservation Muséum national d’Histoire naturelle Paris France Faculté de droit Université de Namur Namur Belgium Citizen Science Lab Leiden University Leiden Netherlands Department of Mechanical Engineering University of Bath Bath UK Nordic Foundation for Development and Ecology (NORDECO) Copenhagen Denmark Department of Biology Brandeis University Waltham MA USA Ornamental Plant Pathology Department of Plant Pathology Puyallup Research and Extension Center Washington State University Puyallup WA USA Environmental and Sustainability Participatory Information Systems Group Institute of Marine Sciences (ICM-CSIC) Barcelona Spain Electron Microscopy Science Technology Platform The Francis Crick Institute London UK Departamento de Biologia Marina Facultad Ciencias del Mar Universidad Católica del Norte Coquimbo Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Coquimbo Chile Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Coquimbo Chile Department of Geography University College London (UCL) London UK
This PrimeView highlights the utility of citizen science across a range of ecological and environmental science research.
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
Impact of adversarial examples on deep learning models for biomedical image segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Ozbulak, Utku Van Messem, Arnout De Neve, Wesley Department of Electronics and Information Systems Ghent University Belgium Department of Applied Mathematics Computer Science and Statistics Ghent University Belgium Center for Biotech Data Science Ghent University Global Campus Korea Republic of
Deep learning models, which are increasingly being used in the field of medical image analysis, come with a major security risk, namely, their vulnerability to adversarial examples. Adversarial exam- ples are carefull... 详细信息
来源: 评论
Not all adversarial examples require a complex defense: Identifying over-optimized adversarial examples with IQR-based logit thresholding
arXiv
收藏 引用
arXiv 2019年
作者: Ozbulak, Utku Van Messem, Arnout De Neve, Wesley Department of Electronics and Information Systems Ghent University Belgium Department of Applied Mathematics Computer Science and Statistics Ghent University Belgium Center for Biotech Data Science Ghent University Global Campus Korea Republic of
Detecting adversarial examples currently stands as one of the biggest challenges in the field of deep learning. Adversarial attacks, which produce adversarial examples, increase the prediction likelihood of a target c... 详细信息
来源: 评论
Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Jin Feng, Fan Marti-Puig, Pere Caiafa, Cesar F. Sun, Zhe Duan, Feng Solé-Casals, Jordi College of Computer Science Nankai University Tianjin300071 China College of Artificial Intelligence Nankai University Tianjin300350 China Data and Signal Processing Group University of Vic—Central University of Catalonia Catalonia Vic08500 Spain Instituto Argentino de Radioastronomía CONICET CCT La Plata CIC-PBA UNLP V. Elisa1894 Argentina Tensor Learning Team Center for Advanced Intelligence Project RIKEN Tokyo103-0027 Japan Computational Engineering Applications Unit Head Office for Information Systems and Cybersecurity RIKEN Saitama351-0198 Japan
Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amo... 详细信息
来源: 评论
In-silico structural and functional analysis of nonsynonymous single nucleotide polymorphisms in human FOLH1 gene
收藏 引用
In silico pharmacology 2025年 第1期13卷 32页
作者: Abtin Tondar Muhammad Irfan Sergio Sánchez-Herrero Hafsa Athar Aleena Haqqi Asim Kumar Bepari Laura Calvet Liñán David Hervás Marin Department of Computer Science Multimedia and Telecommunication Interuniversity Doctoral Program in Bioinformatics Universitat Oberta de Catalunya Barcelona (UOC) Spain. Stanford Deep Data Research Center Stanford University Stanford USA. Atta-Ur-Rahman School of Applied Biosciences (ASAB) National University of Sciences and Technology (NUST) Islamabad Punjab Pakistan. School of Medical Laboratory Technology Minhaj University Lahore (MUL) Lahore Punjab Pakistan. Department of Pharmaceutical Sciences North South University (NSU) Dhaka Bangladesh. Telecommunications and Systems Engineering Department Universitat Autònoma de Barcelona (UAB) Sabadell Spain. Department of Applied Statistics and Operational Research and Quality Alcoy Universitat Politècnica de València (UPV) Alcoy Spain.
Non-synonymous single nucleotide polymorphisms (nsSNPs), also known as missense SNPs, can seriously affect an individual’s vulnerability to numerous diseases, including cancer. In this study, we conducted a comprehen... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Multiplexed CRISPR In Vivo Editing of CLL Loss-of-Function Lesions Models Transformation of Chronic Lymphocytic Leukemia into Richter's Syndrome
收藏 引用
BLOOD 2020年 136卷 2-3页
作者: Ten Hacken, Elisa Sewastianik, Tomasz Redd, Robert A. Fell, Geoffrey Uduman, Mohamed Gruber, Michaela Yin, Shanye Clement, Kendell Parry, Erin Michelle Li, Shuqiang Hernandez-Sanchez, Maria Billington, Leah Witten, Elizabeth Baranowski, Kaitlyn J. Wang, Lili Pinello, Luca Livak, Kenneth J. Neuberg, Donna S. Carrasco, Ruben D. Wu, Catherine J. Harvard Medical School Boston MA Department of Medical Oncology Dana Farber Cancer Institute Boston MA Department of Experimental Hematology Institute of Hematology and Transfusion Medicine Warsaw Poland Department of Oncologic Pathology Dana-Farber Cancer Institute Boston MA Department of Data Science Dana-Farber Cancer Institute Boston MA Department of Medical Oncology Dana-Farber Cancer Institute Boston MA Department of Medicine I Division of Hematology and Hemostaseology and Comprehensive Cancer Center Medical University of Vienna A - 1090 Vienna AUT CeMM Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria Broad Institute of MIT and Harvard Cambridge MA Molecular Pathology Unit and Center for Cancer Research Massachusetts General Hospital Charlestown MA Department of Medical Oncology Brigham & Women’s Hospital/Massachusetts General Hospital Boston MA Translational Immunogenomics Lab Dana-Farber Cancer Institute Boston MA Universidad de Salamanca IBSAL Centro de Investigación del Cáncer IBMCC-CSIC Salamanca Spain Department of Systems Biology Beckman Research Institute City of Hope Monrovia CA Department of Data Sciences Dana-Farber Cancer Institute Boston MA Dept. of Pathology Brigham and Women's Hospital Boston MA Department of Internal Medicine Brigham and Women's Hospital Boston MA
Although we have gained a wealth of knowledge from large-scale DNA sequencing studies across blood cancers, we still know little about the functional interplay of the discovered putative drivers in the generation of c...
来源: 评论
Feature Extraction and Classification from Planetary science datasets enabled by Machine Learning
arXiv
收藏 引用
arXiv 2023年
作者: Nixon, Conor A. Yahn, Zachary Duncan, Ethan Neidel, Ian Mills, Alyssa C. Seignovert, Benoît Larson, Andrew Gansler, Kathryn Liles, Charles Walker, Catherine C. Trent, Douglas M. Santerre, John Planetary Systems Laboratory NASA Goddard Space Flight Center 8800 Greenbelt Road GreenbeltMD20771 United States University of Virginia Computer Science Department 351 McCormick Road CharlottesvilleVA22904 United States School of Information University of California Berkeley 102 South Hall # 4600 BerkeleyCA94720 United States Yale University Timothy Dwight College 345 Temple St New HavenCT06511-8238 United States Baylor University Geosciences Department One Bear Place #97354 WacoTX76798-7354 United States Nantes Université Laboratoire de Planétologie et Géosciences 2 Chem. de la Houssinière Bâtiment 4 Nantes44300 France Business Intelligence Division Inntopia 782 Mountain Rd StoweVT05672 United States University of Maryland Department of Geology 8000 Regents Dr #237 College ParkMD20742 United States NASA Langley Research Center Center Operations Directorate 1 NASA Drive HamptonVA23666 United States Department of Applied Ocean Physics and Engineering Woods Hole Oceanographic Institution 98 Water Street Woods HoleMA02543 United States SAIC | East-2 NASA Langley Research Center OCIO Information Data & Analytics Services 1 NASA Drive HamptonVA23666 United States
In this paper we present two examples of recent investigations that we have undertaken, applying Machine Learning (ML) neural networks (NN) to image datasets from outer planet missions to achieve feature recognition. ... 详细信息
来源: 评论