咨询与建议

限定检索结果

文献类型

  • 846 篇 期刊文献
  • 509 篇 会议
  • 12 册 图书

馆藏范围

  • 1,367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 925 篇 工学
    • 693 篇 计算机科学与技术...
    • 578 篇 软件工程
    • 221 篇 信息与通信工程
    • 144 篇 生物工程
    • 136 篇 电气工程
    • 103 篇 控制科学与工程
    • 96 篇 生物医学工程(可授...
    • 92 篇 光学工程
    • 74 篇 电子科学与技术(可...
    • 58 篇 机械工程
    • 43 篇 化学工程与技术
    • 34 篇 网络空间安全
    • 32 篇 交通运输工程
    • 31 篇 动力工程及工程热...
    • 29 篇 安全科学与工程
    • 28 篇 仪器科学与技术
  • 519 篇 理学
    • 264 篇 数学
    • 161 篇 生物学
    • 130 篇 物理学
    • 93 篇 统计学(可授理学、...
    • 39 篇 化学
    • 38 篇 系统科学
  • 265 篇 管理学
    • 154 篇 管理科学与工程(可...
    • 114 篇 图书情报与档案管...
    • 81 篇 工商管理
  • 104 篇 医学
    • 85 篇 临床医学
    • 73 篇 基础医学(可授医学...
    • 45 篇 公共卫生与预防医...
    • 38 篇 药学(可授医学、理...
  • 45 篇 法学
    • 38 篇 社会学
  • 25 篇 经济学
  • 14 篇 农学
  • 10 篇 教育学
  • 4 篇 艺术学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 44 篇 feature extracti...
  • 38 篇 deep learning
  • 36 篇 machine learning
  • 32 篇 training
  • 30 篇 semantics
  • 30 篇 accuracy
  • 24 篇 computational mo...
  • 24 篇 artificial intel...
  • 23 篇 predictive model...
  • 21 篇 reinforcement le...
  • 21 篇 data models
  • 20 篇 deep neural netw...
  • 20 篇 federated learni...
  • 19 篇 convolutional ne...
  • 18 篇 convolution
  • 17 篇 contrastive lear...
  • 15 篇 graph neural net...
  • 14 篇 image segmentati...
  • 14 篇 data mining
  • 14 篇 robustness

机构

  • 49 篇 college of compu...
  • 43 篇 school of data a...
  • 34 篇 college of compu...
  • 28 篇 nanyang technolo...
  • 27 篇 national enginee...
  • 26 篇 school of comput...
  • 25 篇 school of comput...
  • 23 篇 key laboratory o...
  • 21 篇 school of electr...
  • 21 篇 key laboratory o...
  • 20 篇 school of cyber ...
  • 17 篇 shandong provinc...
  • 17 篇 school of cyber ...
  • 16 篇 school of comput...
  • 16 篇 national enginee...
  • 16 篇 hubei engineerin...
  • 16 篇 beijing advanced...
  • 16 篇 school of inform...
  • 16 篇 school of comput...
  • 15 篇 hubei key labora...

作者

  • 71 篇 niyato dusit
  • 23 篇 kang jiawen
  • 21 篇 huang qingming
  • 21 篇 chen mingzhe
  • 21 篇 jin hai
  • 20 篇 xiong zehui
  • 19 篇 xu qianqian
  • 18 篇 yang yang
  • 16 篇 shen linlin
  • 14 篇 zheng wei-shi
  • 14 篇 ezugwu absalom e...
  • 14 篇 yang zhiyong
  • 13 篇 hu shengshan
  • 13 篇 han zhu
  • 13 篇 zhang leo yu
  • 13 篇 ai bo
  • 13 篇 hai jin
  • 13 篇 du hongyang
  • 12 篇 li tianrui
  • 11 篇 yang zhaohui

语言

  • 1,060 篇 英文
  • 298 篇 其他
  • 13 篇 中文
检索条件"机构=Unit for Data Science and Computing School of Computer Science and Information"
1367 条 记 录,以下是901-910 订阅
排序:
Time-Aware Missing Traffic Flow Prediction for Sensors with Privacy-Preservation
Time-Aware Missing Traffic Flow Prediction for Sensors with ...
收藏 引用
作者: Lianyong Qi Fan Wang Xiaolong Xu Wanchun Dou Xuyun Zhang Mohammad R.Khosravi Xiaokang Zhou School of Computer Science Qufu Normal University School of Computer and Software Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Nanjing University of Information Science and Technology State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing University Department of Computing Macquarie University Department of Computer Engineering Persian Gulf University Department of Electrical and Electronic Engineering Shiraz University of Technology Faculty of Data Science Shiga University
With the continuous development of Io T, a number of sensors establish on the roadside to monitor traffic conditions in real time. The continuously traffic data generated by these sensors makes traffic management feas... 详细信息
来源: 评论
Systematic Literature Review on Cyber Situational Awareness Visualizations
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Liuyue Jayatilaka, Asangi Nasim, Mehwish Grobler, Marthie Zahedi, Mansooreh Ali Babar, M. CREST - the Centre for Research on Engineering Software Technologies School of Computer Science The University of Adelaide Australia Australia College of Science and Engineering Flinders University AdelaideSA5000 Australia CSIRO's Data61 Melbourne Australia School of Computing and Information Systems The University of Melbourne Australia
The dynamics of cyber threats are increasingly complex, making it more challenging than ever for organizations to obtain in-depth insights into their cyber security status. Therefore, organizations rely on Cyber Situa... 详细信息
来源: 评论
Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching
Attention-Weighted Federated Deep Reinforcement Learning for...
收藏 引用
作者: Wang, Xiaofei Li, Ruibin Wang, Chenyang Li, Xiuhua Taleb, Tarik Leung, Victor C. M. College of Intelligence and Computing Tianjin University Tianjin China Ministry of Education China Department of Communications and Networking School of Electrical Engineering Aalto University Espoo Finland College of Computer Science and Software Engineering Shenzhen University Shenzhen China School of Big Data and Software Engineering Chongqing University Chongqing401331 China Department of Information Technology and Electrical Engineering Oulu University Oulu90570 Finland Department of Computer and Information Security Sejong University Seoul05006 Korea Republic of Department of Electrical and Computer Engineering The University of British Columbia VancouverBCV6T 1Z4 Canada
In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in ... 详细信息
来源: 评论
ER: Equivariance Regularizer for Knowledge Graph Completion
arXiv
收藏 引用
arXiv 2022年
作者: Cao, Zongsheng Xu, Qianqian Yang, Zhiyong Huang, Qingming State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Peng Cheng Laboratory Shenzhen China
Tensor factorization and distanced based models play important roles in knowledge graph completion (KGC). However, the relational matrices in KGC methods often induce a high model complexity, bearing a high risk of ov... 详细信息
来源: 评论
A Learning-Exploring Method to Generate Diverse Paraphrases with Multi-Objective Deep Reinforcement Learning  28
A Learning-Exploring Method to Generate Diverse Paraphrases ...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Liu, Mingtong Yang, Erguang Xiong, Deyi Zhang, Yujie Meng, Yao Hu, Changjian Xu, Jinan Chen, Yufeng School of Computer Science and Information Technology Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China College of Intelligence and Computing Tianjin University Tianjin China Lenovo Research AI Lab. Beijing China
Paraphrase generation (PG) is of great importance to many downstream tasks in natural language processing. Diversity is an essential nature to PG for enhancing generalization capability and robustness of downstream ap... 详细信息
来源: 评论
Geometry Interaction Knowledge Graph Embeddings
arXiv
收藏 引用
arXiv 2022年
作者: Cao, Zongsheng Xu, Qianqian Yang, Zhiyong Cao, Xiaochun Huang, Qingming State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Peng Cheng Laboratory Shenzhen China
Knowledge graph (KG) embeddings have shown great power in learning representations of entities and relations for link prediction tasks. Previous work usually embeds KGs into a single geometric space such as Euclidean ... 详细信息
来源: 评论
EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 2.0: A MANIFESTO OF OPEN CHALLENGES AND INTERDISCIPLINARY RESEARCH DIRECTIONS
arXiv
收藏 引用
arXiv 2023年
作者: Longo, Luca Brcic, Mario Cabitza, Federico Choi, Jaesik Confalonieri, Roberto Ser, Javier Del Guidotti, Riccardo Hayashi, Yoichi Herrera, Francisco Holzinger, Andreas Jiang, Richard Khosravi, Hassan Lecue, Freddy Malgieri, Gianclaudio Páez, Andrés Samek, Wojciech Schneider, Johannes Speith, Timo Stumpf, Simone The Artificial Intelligence and Cognitive Load Research Lab Technological University Dublin Ireland University of Zagreb Faculty of Electrical Engineering and Computing Croatia University of Milano-Bicocca Milan Italy IRCCS Ospedale Galeazzi Sant’Ambrogio Milan Italy Kim Jaechul Graduate School of AI Korea Advanced Institute of Science & Technology Korea Republic of INEEJI Corporation Korea Republic of Department of Mathematics University of Padua Italy Derio Spain Bilbao Spain University of Pisa Pisa Italy Department of Computer Science Meiji University Tokyo Japan Department of Computer Science and Artificial Intelligence DaSCI Andalusian Institute in Data Science & Computational Intelligence University of Granada Granada Spain Human-Centered AI Lab University of Natural Resources and Life Sciences Vienna Austria School of Computing and Communications Lancaster University United Kingdom The University of Queensland Brisbane Australia Sophia Antipolis France eLaw Center for Law and Digital Technologies Leiden University Netherlands Department of Philosophy Universidad de los Andes Bogotá Colombia Center for Research & Formation in Artificial Intelligence Universidad de los Andes Bogotá Colombia Technical University of Berlin Berlin Germany Fraunhofer Heinrich Hertz Institute Berlin Germany Berlin Germany Department of Information Systems and Computer Science University of Liechtenstein Liechtenstein Liechtenstein Department of Philosophy University of Bayreuth Bayreuth Germany Center for Perspicuous Computing Saarland University Saarbrücken Germany School of Computing Science University of Glasgow United Kingdom
As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged... 详细信息
来源: 评论
BayesDose: Comprehensive proton dose prediction with model uncertainty using Bayesian LSTMs
arXiv
收藏 引用
arXiv 2023年
作者: Voss, Luke Neishabouri, Ahmad Ortkamp, Tim Mairani, Andrea Wahl, Niklas Department of Medical Physics in Radiation Oncology German Cancer Research Center – DKFZ Im Neuenheimer Feld 280 Heidelberg69120 Germany Heidelberg Institute for Radiation Oncology – HIRO Im Neuenheimer Feld 280 Heidelberg69120 Germany Ruprecht Karl University of Heidelberg Institute of Computer Science Heidelberg Germany Clinical Cooperation Unit Radiation Oncology German Cancer Research Center – DKFZ Heidelberg Germany Steinbuch Centre for Computing Karlsruhe Germany Heidelberg Germany HIDSS4Health – Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Im Neuenheimer Feld 450 HeidelbergD-69120 Germany
Purpose: Fast dose calculation techniques are needed in proton therapy, particularly in light of time restrictions in adaptive workflows. Neural network models show the potential to substitute conventional dose calcul... 详细信息
来源: 评论
Correction: AI content detection in the emerging information ecosystem: new obligations for media and tech companies
收藏 引用
Ethics and information Technology 2024年 第4期26卷 1-2页
作者: Knott, Alistair Pedreschi, Dino Jitsuzumi, Toshiya Leavy, Susan Eyers, David Chakraborti, Tapabrata Trotman, Andrew Sundareswaran, Sundar Baeza-Yates, Ricardo Biecek, Przemyslaw Weller, Adrian Teal, Paul D. Basu, Subhadip Haklidir, Mehmet Morini, Virginia Russell, Stuart Bengio, Yoshua Social Media Governance Project Global Partnership on AI Montreal Canada School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand University of Pisa Pisa Italy Chuo University Tokyo Japan Insight SFI Research Centre for Data Analytics School of Information and Communication University College Dublin Dublin Ireland School of Computing University of Otago Dunedin New Zealand Alan Turing Institute London United Kingdom University College London London United Kingdom Institute for Experiential AI Northeastern University Silicon Valley USA Warsaw University of Technology Warsaw Poland University of Cambridge Cambridge United Kingdom Computer Science and Engineering Department Jadavpur University Kolkata India Artificial Intelligence Institute Tubitak Bilgem Gebze Türkiye Center for Human-Compatible AI UC Berkeley Berkeley USA Mila - Quebec AI Institute Montreal Canada University of Montreal Montreal Canada
来源: 评论
Sample hardness based gradient loss for long-tailed cervical cell detection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Minmin Li, Xuechen Gao, Xiangbo Chen, Junliang Shen, Linlin Wu, Huisi Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China University of California Irvine United States
Due to the difficulty of cancer samples collection and annotation, cervical cancer datasets usually exhibit a long-tailed data distribution. When training a detector to detect the cancer cells in a WSI (Whole Slice Im... 详细信息
来源: 评论