This book constitutes the thoroughly refereed proceedings of the 22nd International Conference on User Modeling, Adaption and Personalization, held in Aalborg, Denmark, in July 2014. The 23 long and 19 short papers of...
详细信息
ISBN:
(数字)9783319087863
ISBN:
(纸本)9783319087856
This book constitutes the thoroughly refereed proceedings of the 22nd International Conference on User Modeling, Adaption and Personalization, held in Aalborg, Denmark, in July 2014. The 23 long and 19 short papers of the research paper track were carefully reviewed and selected from 146 submissions. The papers cover the following topics: large scale personalization, adaptation and recommendation; Personalization for individuals, groups and populations; modeling individuals, groups and communities; Web dynamics and personalization; adaptive web-based systems; context awareness; social recommendations; user experience; user awareness and control; Affective aspects; UMAP underpinning by psychology models; privacy; perceived security and trust; behavior change and persuasion.
The advancement of mobile multimedia communications, 5G, and Internet of Things (IoT) has led to the widespread use of edge devices, including sensors, smartphones, and wearables. This has generated in a large amount ...
详细信息
The advancement of mobile multimedia communications, 5G, and Internet of Things (IoT) has led to the widespread use of edge devices, including sensors, smartphones, and wearables. This has generated in a large amount of distributed data, leading to new prospects for deep learning. However, this data is confined within data silos and contains sensitive information, making it difficult to be processed in a centralized manner, particularly under stringent data privacy regulations. Federated learning (FL) offers a solution by enabling collaborative learning while ensuring privacy. Nonetheless, data and device heterogeneity complicate FL implementation. This research presents a specialized FL algorithm for heterogeneous edge computing. It integrates a lightweight grouping strategy for homogeneous devices, a scheduling algorithm within groups, and a Split Learning (SL) approach. These contributions enhance model accuracy and training speed, alleviate the burden on resource-constrained devices, and strengthen privacy. Experimental results demonstrate that the GSFL outperforms FedAvg and SplitFed by 6.53× and 1.18×. Under experimental conditions with \(\alpha=0.05\), representing a highly heterogeneous data distribution typical of extreme Non-IID scenarios, GSFL showed better accuracy compared to FedAvg by 10.64%, HACCS by 4.53%, and Cluster-HSFL by 1.16%. GSFL effectively balances privacy protection and computational efficiency for real-world applications in mobile multimedia communications.
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are su...
详细信息
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are susceptible to performance anomalies caused by resource hogging (e.g., CPU or memory), resource contention, etc., which can negatively impact their Quality of Service and violate their Service Level Agreements. Existing research on performance anomaly detection for edge computing environments focuses on model training approaches that either achieve high accuracy at the expense of a time-consuming and resource-intensive training process or prioritize training efficiency at the cost of lower accuracy. To address this gap, while considering the resource constraints and the large number of devices in modern edge platforms, we propose two clustering-based model training approaches: (1) intra-cluster parameter transfer learning-based model training (ICPTL) and (2) cluster-level model training (CM). These approaches aim to find a trade-off between the training efficiency of anomaly detection models and their accuracy. We compared the models trained under ICPTL and CM to models trained for specific devices (most accurate, least efficient) and a single general model trained for all devices (least accurate, most efficient). Our findings show that ICPTL’s model accuracy is comparable to that of the model per device approach while requiring only 40% of the training time. In addition, CM further improves training efficiency by requiring 23% less training time and reducing the number of trained models by approximately 66% compared to ICPTL, yet achieving a higher accuracy than a single general model.
This book constitutes the proceedings of the 4th International Conference on Social Informatics, SocInfo 2012, held in Lausanne, Switzerland, in December 2012. The 21 full papers, 18 short papers included in this vol...
详细信息
ISBN:
(数字)9783642353864
ISBN:
(纸本)9783642353857
This book constitutes the proceedings of the 4th International Conference on Social Informatics, SocInfo 2012, held in Lausanne, Switzerland, in December 2012.
The 21 full papers, 18 short papers included in this volume were carefully reviewed and selected from 61 submissions. The papers are organized in topical sections named: social choice mechanisms in the e-society,computational models of social phenomena, social simulation, web mining and its social interpretations, algorithms and protocols inspired by human societies, socio-economic systems and applications, trust, privacy, risk and security in social contexts.
Since 1994, the European Commission has undertaken various actions to expand the use of Earth observation (EO) from space in the Union and to stimulate value-added services based on the use of Earth observation satell...
详细信息
ISBN:
(数字)9783642601057
ISBN:
(纸本)9783540655718;9783642642609
Since 1994, the European Commission has undertaken various actions to expand the use of Earth observation (EO) from space in the Union and to stimulate value-added services based on the use of Earth observation satellite data.' By supporting research and technological development activities in this area, DG XII responded to the need to increase the cost-effectiveness of space derived environmental information. At the same time, it has contributed to a better exploitation of this unique technology, which is a key source of data for environmental monitoring from local to global scale. MAVIRIC is part of the investment made in the context of the Environ ment and Climate Programme (1994-1998) to strengthen applied techniques, based on a better understanding of the link between the remote sensing signal and the underlying bio- geo-physical processes. Translation of this scientific know-how into practical algorithms or methods is a priority in order to con vert more quickly, effectively and accurately space signals into geographical information. Now the availability of high spatial resolution satellite data is rapidly evolving and the fusion of data from different sensors including radar sensors is progressing well, the question arises whether existing machine vision approaches could be advantageously used by the remote sensing community. Automatic feature/object extraction from remotely sensed images looks very attractive in terms of processing time, standardisation and implementation of operational processing chains, but it remains highly complex when applied to natural scenes.
The two-volume set LNAI 7301 and 7302 constitutes the refereed proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2012, held in Kuala Lumpur, Malaysia, in May 2012. The total...
详细信息
ISBN:
(数字)9783642302176
ISBN:
(纸本)9783642302169
The two-volume set LNAI 7301 and 7302 constitutes the refereed proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2012, held in Kuala Lumpur, Malaysia, in May 2012. The total of 20 revised full papers and 66 revised short papers were carefully reviewed and selected from 241 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas. The papers are organized in topical sections on supervised learning: active, ensemble, rare-class and online; unsupervised learning: clustering, probabilistic modeling in the first volume and on pattern mining: networks, graphs, time-series and outlier detection, and data manipulation: pre-processing and dimension reduction in the second volume.
暂无评论