咨询与建议

限定检索结果

文献类型

  • 481 篇 会议
  • 149 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 637 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 387 篇 工学
    • 228 篇 计算机科学与技术...
    • 202 篇 软件工程
    • 97 篇 信息与通信工程
    • 62 篇 光学工程
    • 55 篇 控制科学与工程
    • 50 篇 生物医学工程(可授...
    • 45 篇 生物工程
    • 40 篇 机械工程
    • 37 篇 电子科学与技术(可...
    • 35 篇 电气工程
    • 22 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 12 篇 建筑学
    • 12 篇 航空宇航科学与技...
    • 10 篇 力学(可授工学、理...
    • 10 篇 土木工程
    • 7 篇 交通运输工程
  • 236 篇 理学
    • 152 篇 数学
    • 83 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 20 篇 化学
    • 14 篇 系统科学
  • 77 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 40 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 经济学
  • 3 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 91 篇 pattern recognit...
  • 76 篇 image processing
  • 60 篇 image segmentati...
  • 38 篇 feature extracti...
  • 28 篇 computer vision
  • 28 篇 shape
  • 26 篇 image analysis
  • 26 篇 image reconstruc...
  • 22 篇 robustness
  • 20 篇 automation
  • 20 篇 cameras
  • 20 篇 image recognitio...
  • 18 篇 object detection
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 16 篇 pixel
  • 14 篇 neural networks
  • 14 篇 principal compon...
  • 13 篇 image edge detec...
  • 13 篇 image coding

机构

  • 68 篇 institute of ima...
  • 34 篇 institute of ima...
  • 23 篇 image processing...
  • 21 篇 pattern recognit...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 15 篇 pattern recognit...
  • 13 篇 school of comput...
  • 9 篇 pattern recognit...
  • 9 篇 college of infor...
  • 8 篇 department of si...
  • 7 篇 institute of pat...
  • 7 篇 laboratory of im...
  • 7 篇 knowledge engine...
  • 6 篇 institute of ima...
  • 6 篇 state education ...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 faculty of engin...
  • 5 篇 institute of med...

作者

  • 51 篇 yang jie
  • 44 篇 jie yang
  • 28 篇 kropatsch walter...
  • 22 篇 ping guo
  • 20 篇 h. bischof
  • 19 篇 sablatnig robert
  • 18 篇 r. sablatnig
  • 16 篇 bischof horst
  • 15 篇 guo ping
  • 14 篇 haxhimusa yll
  • 14 篇 xiangjian he
  • 14 篇 liu jian
  • 13 篇 jian liu
  • 13 篇 robert sablatnig
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 m. kampel
  • 11 篇 huang xiaolin
  • 10 篇 kampel martin
  • 10 篇 jiancheng zou

语言

  • 616 篇 英文
  • 13 篇 中文
  • 8 篇 其他
检索条件"机构=Vienna University of Technology Pattern Recognition and Image Processing"
637 条 记 录,以下是31-40 订阅
排序:
CDFI: Cross Domain Feature Interaction for Robust Bronchi Lumen Detection
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Jiasheng Zhang, Tianyi Wu, Yangqian Yang, Jie Yang, Guang-Zhong Gu, Yun The Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai China
Endobronchial intervention is increasingly used as a minimally invasive means for the treatment of pulmonary diseases. In order to reduce the difficulty of manipulation in complex airway networks, robust lumen detecti... 详细信息
来源: 评论
SiamORPN: Enabling Orthogonality between Object and Background in Siamese Object Tracking
SiamORPN: Enabling Orthogonality between Object and Backgrou...
收藏 引用
International Conference on Tools for Artificial Intelligence (ICTAI)
作者: Kai Huang Chaolin Pan Jun Chu Lu Leng Jun Miao Junjiang Wu Lingfeng Wang Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China School of Information Science and Technology Beijing University of Chemical Technology Beijing China
Siamese-based trackers currently are the dominant tracking paradigm due to the balance between speed and performance. However, it is prone to drift and tracking failure when the environment is complex and similar obje... 详细信息
来源: 评论
Consistency-Guided Adaptive Alternating Training for Semi-Supervised Salient Object Detection
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Chen, Liyuan Liu, Wei Wang, Hua Jeon, Sang-Woon Jiang, Yunliang Zheng, Zhonglong Zhejiang Normal University School of Computer Science and Technology Jinhua321004 China Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition Department of Automation Shanghai200240 China Victoria University Institute for Sustainable Industries and Liveable Cities College of Engineering and Science MelbourneVIC8001 Australia Hanyang University Department of Electrical and Electronic Engineering Ansan Korea Republic of
This paper presents a novel approach that leverages two models to integrate features from numerous unlabeled images, addressing the challenge of semi-supervised salient object detection (SSOD). Unlike conventional met... 详细信息
来源: 评论
MambaMIM: Pre-training Mamba with State Space Token-interpolation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Fenghe Nian, Bingkun Li, Yingtai Yang, Jie Wei, Liu Zhou, S. Kevin School of Biomedical Engineering Division of Life Sciences and Medicine University of Science and Technology of China Anhui Hefei230026 China Suzhou Institute for Advanced Research University of Science and Technology of China Jiangsu Suzhou215123 China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Generative self-supervised learning demonstrates outstanding representation learning capabilities in both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). However, there are currently no generative... 详细信息
来源: 评论
SRSNetwork: Siamese Reconstruction-Segmentation Networks based on Dynamic-Parameter Convolution
arXiv
收藏 引用
arXiv 2023年
作者: Nian, Bingkun Tang, Fenghe Ding, Jianrui Zhang, Pingping Yang, Jie Kevin Zhou, S. Liu, Wei Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China School of Biomedical Engineering Suzhou Institute for Advanced Research University of Science and Technology of China China School of Computer Science and Technology Harbin Institute of Technology China School of artificial intelligence Dalian University of Technology China
In this paper, we present a high-performance deep neural network for weak target image segmentation, including medical image segmentation and infrared image segmentation. To this end, this work analyzes the existing d... 详细信息
来源: 评论
Towards Robust Neural Networks Via Orthogonal Diversity
SSRN
收藏 引用
SSRN 2023年
作者: Fang, Kun Tao, Qinghua Wu, Yingwen Li, Tao Cai, Jia Cai, Feipeng Huang, Xiaolin Yang, Jie Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China ESAT-STADIUS KU Leuven LeuvenB-3001 Belgium Central Media Technology Institute Huawei Technologies Ltd. China
Deep Neural Networks (DNNs) are vulnerable to invisible perturbations on the images generated by adversarial attacks, which raises researches on the adversarial robustness of DNNs. A series of methods represented by t... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Gait Planning and Motion Control Based on Vrep Simulation for Quadruped Robot
Gait Planning and Motion Control Based on Vrep Simulation fo...
收藏 引用
WRC Symposium on Advanced Robotics and Automation (WRC SARA)
作者: Linqi Zhou Zhihua Chen Jun Liu Zhi Liu Yumeng Chen Liting Zhang key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition and MOE Key Lab of Nondestructive Testing Technology Nanchang Hangkong University Nanchang China State Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing China
Gait planning of quadruped robots plays an important role in achieving less walking, including dynamic and static gait. In this article, a static and dynamic gait control method based on center of gravity stability ma...
来源: 评论
Deep Learning in Palmprint recognition-A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Chengrui Yang, Ziyuan Jia, Wei Leng, Lu Zhang, Bob Teoh, Andrew Beng Jin College of Computer Science Sichuan University Chengdu610065 China Singapore School of Computer and Information Hefei University of Technology Hefei China Jiangxi Provincial Key Laboratory of Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China Pattern Analysis and Machine Intelligence Group Department of Computer and Information Science University of Macau Taipa China School of Electrical and Electronic Engineering College of Engineering Yonsei University Seoul Korea Republic of
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as t... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论