咨询与建议

限定检索结果

文献类型

  • 485 篇 会议
  • 150 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 642 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 392 篇 工学
    • 234 篇 计算机科学与技术...
    • 203 篇 软件工程
    • 97 篇 信息与通信工程
    • 62 篇 光学工程
    • 58 篇 控制科学与工程
    • 50 篇 生物医学工程(可授...
    • 45 篇 生物工程
    • 40 篇 机械工程
    • 39 篇 电子科学与技术(可...
    • 37 篇 电气工程
    • 22 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 12 篇 建筑学
    • 12 篇 航空宇航科学与技...
    • 10 篇 力学(可授工学、理...
    • 10 篇 土木工程
    • 7 篇 交通运输工程
  • 238 篇 理学
    • 153 篇 数学
    • 84 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 20 篇 化学
    • 14 篇 系统科学
  • 78 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 40 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 29 篇 医学
    • 25 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 经济学
  • 3 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 91 篇 pattern recognit...
  • 76 篇 image processing
  • 61 篇 image segmentati...
  • 38 篇 feature extracti...
  • 28 篇 computer vision
  • 28 篇 shape
  • 26 篇 image analysis
  • 26 篇 image reconstruc...
  • 22 篇 robustness
  • 20 篇 automation
  • 20 篇 cameras
  • 20 篇 image recognitio...
  • 18 篇 object detection
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 16 篇 pixel
  • 14 篇 neural networks
  • 14 篇 principal compon...
  • 13 篇 image edge detec...
  • 13 篇 image coding

机构

  • 69 篇 institute of ima...
  • 34 篇 institute of ima...
  • 23 篇 image processing...
  • 21 篇 pattern recognit...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 15 篇 pattern recognit...
  • 13 篇 school of comput...
  • 9 篇 pattern recognit...
  • 9 篇 college of infor...
  • 8 篇 department of si...
  • 7 篇 institute of pat...
  • 7 篇 department of au...
  • 7 篇 laboratory of im...
  • 7 篇 school of comput...
  • 7 篇 knowledge engine...
  • 6 篇 institute of ima...
  • 6 篇 institute of med...
  • 6 篇 state education ...
  • 6 篇 institute for co...

作者

  • 51 篇 yang jie
  • 44 篇 jie yang
  • 28 篇 kropatsch walter...
  • 22 篇 ping guo
  • 20 篇 h. bischof
  • 19 篇 sablatnig robert
  • 18 篇 r. sablatnig
  • 16 篇 bischof horst
  • 15 篇 guo ping
  • 14 篇 haxhimusa yll
  • 14 篇 xiangjian he
  • 14 篇 liu jian
  • 13 篇 jian liu
  • 13 篇 robert sablatnig
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 m. kampel
  • 11 篇 huang xiaolin
  • 11 篇 gong chen
  • 10 篇 kampel martin

语言

  • 615 篇 英文
  • 14 篇 其他
  • 13 篇 中文
检索条件"机构=Vienna University of Technology Pattern Recognition and Image Processing"
642 条 记 录,以下是571-580 订阅
排序:
Robust spot fitting for genetic spot array images
Robust spot fitting for genetic spot array images
收藏 引用
IEEE International Conference on image processing
作者: H.-Y. Chen N. Brandle H. Bischof H. Lapp Pattern Recognition & Image Processing Group University of Technology Vienna Vienna Austria Novartis Research Institute Vienna Genetics Vienna Austria
Addresses the problem of reliably fitting parametric and semi-parametric models to high density spot array images obtained in gene expression experiments. The goal is to measure the amount of genetic material at speci... 详细信息
来源: 评论
Fuzzy c-means in an MDL-framework
Fuzzy c-means in an MDL-framework
收藏 引用
International Conference on pattern recognition
作者: A. Selb H. Bischof A. Leonardis Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria Faculty of Computer and Information Science University of Ljubljana Ljubljana Slovenia
In this paper we present a minimum description length (MDL) framework for fuzzy clustering algorithms. This framework enables us to find an optimal number of cluster centers. We applied our approach to the fuzzy c-mea... 详细信息
来源: 评论
Multiple eigenspaces by MDL
Multiple eigenspaces by MDL
收藏 引用
International Conference on pattern recognition
作者: A. Leonardis H. Bischof Faculty of Computer and Information Science University of Ljubljana Ljubljana Slovenia Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria
We propose an approach to constructing multiple eigenspaces from a set of training images based on the minimum description length (MDL) principle. The main idea is to systematically build a redundant set of eigenspace... 详细信息
来源: 评论
Gravel image Segmentation in Noisy Background Based on Partial Entropy Method
收藏 引用
中国地质大学学报(英文版) 2000年 第1期11卷 92-94页
作者: Wang Guangjun Tian Jinwen Chen Zhenyu Liu Jian Wu Guoping State Key Laboratory for Image Processing and Intelligent Control Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology WuHan 430074 Faculty of Information Engineering China University of Geosciences Wuhan 430074
Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In ... 详细信息
来源: 评论
Content based image retrieval using interest points and texture features
Content based image retrieval using interest points and text...
收藏 引用
15th International Conference on pattern recognition, ICPR 2000
作者: Wolf, Christian Jolion, Jean-Michel Kropatsch, Walter Bischof, Horst Vienna University of Technology Pattern Recognition and Image Processing Group Favoritenstraße 9/1832 Wien1040 Austria INSA de Lyon Laboratoire Reconnaissance de Formes et Vision 3 Avenue Albert Einstein Villeurbanne Cedex69626 France
Content based image retrieval is the task of searching images from a database, which are visually similar to a given example image. We present methods for content based image retrieval based on texture similarity usin... 详细信息
来源: 评论
Nearness in digital images and proximity spaces
Nearness in digital images and proximity spaces
收藏 引用
9th International Conference on Discrete Geometry for Computer imagery, DGCI 2000
作者: Pták, Pavel Kropatsch, Walter G. CMP – Czech Technical University Center for Machine Perception Karlovo nám. 13 Praha 2121 35 Czech Republic Institute of Computer Aided Automation 183/2 Vienna University of Technology Pattern Recognition and Image Processing Group Favoritenstr.9 WienA-1040 Austria
The concept of "nearness", which has been dealt with as soon as one started studying digital images, finds one of its rigorous forms in the notion of proximity space. It is this notion, together with "n... 详细信息
来源: 评论
Background mosaic from egomotion
Background mosaic from egomotion
收藏 引用
International Conference on pattern recognition
作者: R. Megret C. Saraceno W. Kropatsch École Normale Supérieure de Lyon Lyon France Starlab NV Brussels Belgium Pattern Recognition and Image Processing group University of Technology Vienna Vienna Austria
A framework is presented that produces the mosaic corresponding to the background object of an image sequence. It is based on the dominant motion assumption, which states that the background has a parametric motion an... 详细信息
来源: 评论
Content based image retrieval using interest points and texture features
Content based image retrieval using interest points and text...
收藏 引用
International Conference on pattern recognition
作者: C. Wolf J.-M. Jolion W. Kropatsch H. Bischof Pattern Recognition and Image Processing Group University of Technology Vienna Wien Austria Laboratoire Reconnaissance de Formes et Vision INSA Lyon Villeurbanne France
Content based image retrieval is the task of searching images from a database, which are visually similar to a given example image. We present methods for content based image retrieval based on texture similarity usin... 详细信息
来源: 评论
On estimating the position of fragments on rotational symmetric pottery  2
On estimating the position of fragments on rotational symmet...
收藏 引用
2nd International Conference on 3-D Digital Imaging and Modeling, 3DIM 1999
作者: Sablatnig, Robert Menard, Christian Vienna University of Technology Institute of Computer Aided Automation Pattern Recognition and Image Processing Group Treitlstr. 3 183-2 WienA-1040 Austria
The activation of ancient vessel-fragments is a time consuming but important task for archaeologists. The basis for classification and reconstruction is the profile which is the cross-section of the fragment in the di...
来源: 评论
Texture Segmentation Based on image Model and Neural Network
收藏 引用
Journal of Earth Science 1999年 第4期18卷 333-335页
作者: Chen Zhenyu Sheng Wen Wang Guangjun Li Dehua(State Education Commission Laboratory for image processing and Intelligence Control, Institute for pattern recognition and Artificial Intelligence, Huazhong university of Science and technology, Wu han 430074) State Education Commission Laboratory for Image Processing and Intelligence Control Institute for Pattern Recognition and Artificial IntelligenceHuazhong University of Science and TechnologyWuhan 430074
This paper presents a texture segmentation approach which is based on the Markov random field model (MRF) and feed forward neural *** texture is modeled by the second order Gauss MRF model, and the least square error ... 详细信息
来源: 评论