咨询与建议

限定检索结果

文献类型

  • 481 篇 会议
  • 149 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 637 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 387 篇 工学
    • 228 篇 计算机科学与技术...
    • 202 篇 软件工程
    • 97 篇 信息与通信工程
    • 62 篇 光学工程
    • 55 篇 控制科学与工程
    • 50 篇 生物医学工程(可授...
    • 45 篇 生物工程
    • 40 篇 机械工程
    • 37 篇 电子科学与技术(可...
    • 35 篇 电气工程
    • 22 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 12 篇 建筑学
    • 12 篇 航空宇航科学与技...
    • 10 篇 力学(可授工学、理...
    • 10 篇 土木工程
    • 7 篇 交通运输工程
  • 236 篇 理学
    • 152 篇 数学
    • 83 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 20 篇 化学
    • 14 篇 系统科学
  • 77 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 40 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 28 篇 医学
    • 25 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
  • 4 篇 农学
  • 3 篇 经济学
  • 3 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 91 篇 pattern recognit...
  • 76 篇 image processing
  • 60 篇 image segmentati...
  • 38 篇 feature extracti...
  • 28 篇 computer vision
  • 28 篇 shape
  • 26 篇 image analysis
  • 26 篇 image reconstruc...
  • 22 篇 robustness
  • 20 篇 automation
  • 20 篇 cameras
  • 20 篇 image recognitio...
  • 18 篇 object detection
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 16 篇 pixel
  • 14 篇 neural networks
  • 14 篇 principal compon...
  • 13 篇 image edge detec...
  • 13 篇 image coding

机构

  • 68 篇 institute of ima...
  • 34 篇 institute of ima...
  • 23 篇 image processing...
  • 21 篇 pattern recognit...
  • 17 篇 institute of ima...
  • 15 篇 institute for pa...
  • 15 篇 pattern recognit...
  • 13 篇 school of comput...
  • 9 篇 pattern recognit...
  • 9 篇 college of infor...
  • 8 篇 department of si...
  • 7 篇 institute of pat...
  • 7 篇 laboratory of im...
  • 7 篇 knowledge engine...
  • 6 篇 institute of ima...
  • 6 篇 state education ...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 faculty of engin...
  • 5 篇 institute of med...

作者

  • 51 篇 yang jie
  • 44 篇 jie yang
  • 28 篇 kropatsch walter...
  • 22 篇 ping guo
  • 20 篇 h. bischof
  • 19 篇 sablatnig robert
  • 18 篇 r. sablatnig
  • 16 篇 bischof horst
  • 15 篇 guo ping
  • 14 篇 haxhimusa yll
  • 14 篇 xiangjian he
  • 14 篇 liu jian
  • 13 篇 jian liu
  • 13 篇 robert sablatnig
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 m. kampel
  • 11 篇 huang xiaolin
  • 10 篇 kampel martin
  • 10 篇 jiancheng zou

语言

  • 616 篇 英文
  • 13 篇 中文
  • 8 篇 其他
检索条件"机构=Vienna University of Technology Pattern Recognition and Image Processing"
637 条 记 录,以下是81-90 订阅
排序:
Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Franco-Barranco, Daniel Lin, Zudi Jang, Won-Dong Wang, Xueying Shen, Qijia Yin, Wenjie Fan, Yutian Li, Mingxing Chen, Chang Xiong, Zhiwei Xin, Rui Liu, Hao Chen, Huai Li, Zhili Zhao, Jie Chen, Xuejin Pape, Constantin Conrad, Ryan De Folter, Jozefus Nightingale, Luke Jones, Martin L. Liu, Yanling Ziaei, Dorsa Huschauer, Stephan Arganda-Carreras, Ignacio Pfister, Hanspeter Wei, Donglai The Department of Computer Science and Artificial Intelligence University of the Basque Country Donostia-San Sebastian Spain San Sebastian Spain Ikerbasque Basque Foundation for Science Bilbao Spain Biofisika Institute CSIC UPV/EHU Bilbao Spain Harvard University All-ston MA United States The Department of Molecular and Cellular Biology Harvard University CambridgeMA United States The Wellcome Centre for Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom University of Science and Technology of China Anhui China The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application University of Science and Technology of China Anhui China The Georg-August University Goettingen Germany The Center for Molecular Microscopy Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda United States The Cancer Research Technology Program Frederick National Laboratory for Cancer Research Frederick United States The Francis Crick Institute London United Kingdom The Advanced Biomedical Computational Science Group Frederick National Laboratory for Cancer Research FrederickMD United States The Computer Science Department Boston College Chestnut Hill MA United States
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark datase... 详细信息
来源: 评论
The effect of data augmentation on classification of atrial fibrillation in short single-lead ecg signals using deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Hatamian, Faezeh Nejati Ravikumar, Nishant Vesal, Sulaiman Kemeth, Felix P. Struck, Matthias Maier, Andreas Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Pattern Recognition Lab Department of Computer Science Friedrich-Alexander University Erlangen-Nrnberg Erlangen Germany School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Road segmentation for remote sensing images using adversarial spatial pyramid networks
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Zhou, Huiyu Wang, Ruili Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Informatics University of Leicester LeicesterLE1 7RH United Kingdom School of Logistics and Transportation Central South University of Forestry and Technology China School of Natural and Computational Sciences Massey University Auckland New Zealand
To read the paper please go to IEEE Transactions on Geoscience and Remote Sensing on IEEE Xplore. Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the comple... 详细信息
来源: 评论
A novel deep structure U-net for sea-land segmentation in remote sensing images
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Wang, Ruili Zhou, Huiyu Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China School of Logistics and Transportation Central South University of Forestry and Technology China School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Informatics University of Leicester LeicesterLE1 7RH United Kingdom
Sea-land segmentation is an important process for many key applications in remote sensing. Proper operative sea–land segmentation for remote sensing images remains a challenging issue due to complex and diverse trans... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Dysfunction and recovery of the cortical connectome gradient and its association with gene expression profiles in methamphetamine and heroin use disorders
收藏 引用
Progress in Neuro-Psychopharmacology and Biological Psychiatry 2025年 139卷 111391页
作者: Du, Zhe Yang, Wenhan Wen, Xinwen Cai, Suping Liu, Jun Yuan, Kai School of Life Science and Technology Xidian University Shaanxi Xi'an 710126 China Department of Radiology Second Xiangya Hospital Central South University Changsha 410011 China Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing School of Information Engineering Inner Mongolia University of Science and Technology Inner Mongolia Baotou 014010 China Engineering Research Center of Molecular and Neuro Imaging Ministry of Education Shaanxi Xi'an China Ganzhou City Key Laboratory of Mental Health The Third People's Hospital of Ganzhou City Jiangxi Ganzhou 341000 China Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information School of Life Science and Technology Xidian University Shaanxi Xi'an 710126 China
Background: The hierarchy and segregation of community-based brain networks can be characterized by functional connectome gradient (FCG). Whether the cortical FCG was disrupted and could even be reversed after prolong... 详细信息
来源: 评论
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
The Effect of Data Augmentation on Classification of Atrial ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Faezeh Nejati Hatamian Nishant Ravikumar Sulaiman Vesal Felix P. Kemeth Matthias Struck Andreas Maier Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB) School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom Pattern Recognition Lab Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the...
来源: 评论
Automatic Monitoring of Driver's Physiological Parameters Based on Microarray Camera
Automatic Monitoring of Driver's Physiological Parameters Ba...
收藏 引用
IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)
作者: Jiancheng Zou Zhengzheng Li Peizhou Yan Institute of Image Processing and Pattern Recognition North China University of Technology Beijing Key Laboratory of Urban Rod Traffic Intelligent Control Technology North China University of Technology Shijingshan District Beijing China
Driver's physical and mental states are very important factors affecting the driving states. Traffic accidents are occurred by accompanying abnormal physiological parameters. So how to monitor automatically driver... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论