咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 37 篇 会议

馆藏范围

  • 84 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 44 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 15 篇 光学工程
    • 11 篇 信息与通信工程
    • 11 篇 生物工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 控制科学与工程
    • 5 篇 机械工程
    • 4 篇 电气工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
  • 27 篇 理学
    • 12 篇 生物学
    • 11 篇 数学
    • 8 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学

主题

  • 6 篇 semantics
  • 4 篇 deep learning
  • 4 篇 three-dimensiona...
  • 3 篇 object detection
  • 3 篇 visualization
  • 3 篇 training
  • 2 篇 visual informati...
  • 2 篇 reinforcement le...
  • 2 篇 task analysis
  • 2 篇 generative adver...
  • 2 篇 fungi
  • 2 篇 image segmentati...
  • 2 篇 anomaly detectio...
  • 2 篇 medical imaging
  • 2 篇 cameras
  • 2 篇 convolution
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 sensors
  • 2 篇 eye movements

机构

  • 6 篇 fraunhofer cente...
  • 5 篇 machine learning...
  • 5 篇 computer vision ...
  • 4 篇 fraunhofer iosb ...
  • 4 篇 institute for co...
  • 4 篇 centre for visio...
  • 4 篇 division of medi...
  • 4 篇 lab of vision co...
  • 3 篇 christian dopple...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 machine learning...
  • 3 篇 department of co...
  • 3 篇 interactive mach...
  • 3 篇 vision and fusio...
  • 3 篇 christian dopple...
  • 3 篇 christian dopple...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 fraunhofer cente...
  • 2 篇 universidad pomp...

作者

  • 5 篇 zimmerer david
  • 5 篇 jürgen beyerer
  • 5 篇 bischof horst
  • 5 篇 lienhart rainer
  • 5 篇 possegger horst
  • 5 篇 isensee fabian
  • 5 篇 maier-hein klaus...
  • 4 篇 lin wei
  • 4 篇 zhu jihua
  • 4 篇 kozinski mateusz
  • 4 篇 jäger paul f.
  • 4 篇 carneiro gustavo
  • 4 篇 beyerer jürgen
  • 4 篇 li zhongyu
  • 3 篇 van gool luc
  • 3 篇 wolf stefan
  • 3 篇 timofte radu
  • 3 篇 horst possegger
  • 3 篇 horst bischof
  • 3 篇 wei lin

语言

  • 83 篇 英文
  • 1 篇 其他
检索条件"机构=Vision and Machine Learning Lab"
84 条 记 录,以下是21-30 订阅
排序:
Overcoming multi-model forgetting
arXiv
收藏 引用
arXiv 2019年
作者: Benyahia, Yassine Yu, Kaicheng Bennani-Smires, Kamil Jaggi, Martin Davison, Anthony Salzmann, Mathieu Musat, Claudiu Institute of mathematics EPFL Computer vision lab EPFL Artificial Intellegence Lab Swisscom Machine learning and optimization lab EPFL
We identify a phenomenon, which we refer to as multi-model forgetting, that occurs when sequentially training multiple deep networks with partially-shared parameters;the performance of previously-trained models degrad... 详细信息
来源: 评论
A survey of historical document image datasets
A survey of historical document image datasets
收藏 引用
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Focal Depth Estimation: A Calibration-Free, Subject- and Daytime Invariant Approach
arXiv
收藏 引用
arXiv 2024年
作者: Hosp, Benedikt W. Severitt, Björn Agarwala, Rajat Robust, Evgenia Rusak Sauer, Yannick Wahl, Siegfried ZEISS Vision Science Lab University of Tübingen Germany Machine Learning University of Tübingen Germany ZEISS Vision Care GmbH
In an era where personalized technology is increasingly intertwined with daily life, traditional eye-tracking systems and autofocal glasses face a significant challenge: the need for frequent, user-specific calibratio... 详细信息
来源: 评论
Occlusion Resilient 3D Human Pose Estimation
arXiv
收藏 引用
arXiv 2024年
作者: Roy, Soumava Kumar Badanin, Ilia Honari, Sina Fua, Pascal Computer Vision Lab EPFL Switzerland Machine Learning and Optimization Lab EPFL Switzerland Samsung AI Center Toronto Canada
Occlusions remain one of the key challenges in 3D body pose estimation from single-camera video sequences. Temporal consistency has been extensively used to mitigate their impact but the existing algorithms in the lit... 详细信息
来源: 评论
RecycleNet: Latent Feature Recycling Leads to Iterative Decision Refinement
RecycleNet: Latent Feature Recycling Leads to Iterative Deci...
收藏 引用
IEEE/CVF Winter Conference on Applications of Computer vision (WACV)
作者: Koehler, Gregor Wald, Tassilo Ulrich, Constantin Zimmerer, David Jaeger, Paul F. Franke, Joerg K. H. Kohl, Simon Isensee, Fabian Maier-Hein, Klaus H. German Canc Res Ctr DKFZ Heidelberg Div Med Image Comp Heidelberg Germany Helmholtz Informat & Data Sci Sch Hlth Karlsruhe Germany Helmholtz Informat & Data Sci Sch Hlth Heidelberg Germany DKFZ Helmholtz Imaging Heidelberg Germany DKFZ Natl Ctr Tumor Dis NCT NCT Heidelberg Heidelberg Germany DKFZ Interact Machine Learning Grp Heidelberg Germany DKFZ Appl Comp Vision Lab Heidelberg Germany Univ Freiburg Machine Learning Lab Freiburg Germany Latent Labs latentlabs com London England Univ Heidelberg Hosp Pattern Anal & Learning Grp Heidelberg Germany
Despite the remarkable success of deep learning systems over the last decade, a key difference still remains between neural network and human decision-making: As humans, we can not only form a decision on the spot, bu... 详细信息
来源: 评论
Poison-Aware Open-Set Fungi Classification: Reducing the Risk of Poisonous Confusion  25
Poison-Aware Open-Set Fungi Classification: Reducing the Ris...
收藏 引用
25th Working Notes of the Conference and labs of the Evaluation Forum, CLEF 2024
作者: Wolf, Stefan Thelen, Philipp Beyerer, Jürgen Vision and Fusion Lab Karlsruhe Institute of Technology KIT Vincenz-Prießnitz-Straße 3 Karlsruhe76131 Germany Fraunhofer IOSB Institute of Optronics System Technologies and Image Exploitation Fraunhoferstrasse 1 Karlsruhe76131 Germany Fraunhofer Center for Machine Learning Germany
The FungiCLEF 2024 challenge aims to foster research in the field of application-oriented fine-grained open-set classification. Particularly, it sets the challenge to optimize fungi species classification while recogn... 详细信息
来源: 评论
Artists Identification Using Convolutional Sparse Autoencoder
Artists Identification Using Convolutional Sparse Autoencode...
收藏 引用
International Conference on Computing, Engineering, and Design (ICCED)
作者: Vinnia Kemala Putri Felix Indra Kurniadi Machine Learning and Computer Vision Lab Universitas Indonesia Depok Indonesia School of Engineering and Technology Tanri Abeng University Jakarta Indonesia
This paper describes a method to identify artists with a similar painting technique using a semi-unsupervised learning approach. In this paper, we compared Van Gogh and Paul Gauguin since both use impasto painting tec... 详细信息
来源: 评论
learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects
arXiv
收藏 引用
arXiv 2024年
作者: Pitz, Johannes Röstel, Lennart Sievers, Leon Burschka, Darius Bäuml, Berthold Learning AI for Dextrous Robots Lab Technical University of Munich Germany Germany Machine Vision and Perception Group Technical University of Munich Germany
Reorienting diverse objects with a multi-fingered hand is a challenging task. Current methods in robotic in-hand manipulation are either object-specific or require permanent supervision of the object state from visual... 详细信息
来源: 评论
SESAME: Semantic editing of scenes by adding, manipulating or erasing objects
arXiv
收藏 引用
arXiv 2020年
作者: Ntavelis, Evangelos Romero, Andrés Kastanis, Iason van Gool, Luc Timofte, Radu Computer Vision Lab. ETH Zurich Switzerland Robotics and Machine Learning CSEM SA Switzerland PSI ESAT KU Leuven Belgium
Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are... 详细信息
来源: 评论
Transformer-based Fine-Grained Fungi Classification in an Open-Set Scenario
Transformer-based Fine-Grained Fungi Classification in an Op...
收藏 引用
2022 Conference and labs of the Evaluation Forum, CLEF 2022
作者: Wolf, Stefan Beyerer, Jürgen Vision and Fusion Lab Karlsruhe Institute of Technology KIT c/o Technologiefabrik Haid-und-Neu-Str. 7 Karlsruhe76131 Germany Fraunhofer IOSB Institute of Optronics System Technologies and Image Exploitation Fraunhoferstrasse 1 Karlsruhe76131 Germany Fraunhofer Center for Machine Learning Germany
Fine-grained fungi classification describes the task of estimating the species of a fungus. The FungiCLEF 2022 challenge started a competition for the best solution to solve this task in an open-set scenario. For our ... 详细信息
来源: 评论