咨询与建议

限定检索结果

文献类型

  • 47 篇 期刊文献
  • 37 篇 会议

馆藏范围

  • 84 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 44 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 15 篇 光学工程
    • 11 篇 信息与通信工程
    • 11 篇 生物工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 控制科学与工程
    • 5 篇 机械工程
    • 4 篇 电气工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
  • 27 篇 理学
    • 12 篇 生物学
    • 11 篇 数学
    • 8 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 8 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学

主题

  • 6 篇 semantics
  • 4 篇 deep learning
  • 4 篇 three-dimensiona...
  • 3 篇 object detection
  • 3 篇 visualization
  • 3 篇 training
  • 2 篇 visual informati...
  • 2 篇 reinforcement le...
  • 2 篇 task analysis
  • 2 篇 generative adver...
  • 2 篇 fungi
  • 2 篇 image segmentati...
  • 2 篇 anomaly detectio...
  • 2 篇 cameras
  • 2 篇 convolution
  • 2 篇 benchmarking
  • 2 篇 machine learning
  • 2 篇 sensors
  • 2 篇 eye movements
  • 2 篇 deterioration

机构

  • 6 篇 fraunhofer cente...
  • 5 篇 machine learning...
  • 5 篇 computer vision ...
  • 4 篇 fraunhofer iosb ...
  • 4 篇 institute for co...
  • 4 篇 centre for visio...
  • 4 篇 division of medi...
  • 4 篇 lab of vision co...
  • 3 篇 christian dopple...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 machine learning...
  • 3 篇 department of co...
  • 3 篇 interactive mach...
  • 3 篇 vision and fusio...
  • 3 篇 christian dopple...
  • 3 篇 christian dopple...
  • 2 篇 university of sc...
  • 2 篇 applied computer...
  • 2 篇 fraunhofer cente...
  • 2 篇 universidad pomp...

作者

  • 5 篇 zimmerer david
  • 5 篇 jürgen beyerer
  • 5 篇 bischof horst
  • 5 篇 lienhart rainer
  • 5 篇 possegger horst
  • 5 篇 isensee fabian
  • 5 篇 maier-hein klaus...
  • 4 篇 lin wei
  • 4 篇 zhu jihua
  • 4 篇 kozinski mateusz
  • 4 篇 jäger paul f.
  • 4 篇 carneiro gustavo
  • 4 篇 beyerer jürgen
  • 4 篇 li zhongyu
  • 3 篇 van gool luc
  • 3 篇 wolf stefan
  • 3 篇 timofte radu
  • 3 篇 horst possegger
  • 3 篇 horst bischof
  • 3 篇 wei lin

语言

  • 83 篇 英文
  • 1 篇 其他
检索条件"机构=Vision and Machine Learning Lab"
84 条 记 录,以下是41-50 订阅
排序:
Smoothing splines for discontinuous signals
arXiv
收藏 引用
arXiv 2022年
作者: Storath, Martin Weinmann, Andreas Lab for Mathematical Methods in Computer Vision and Machine Learning Technische Hochschule Würzburg-Schweinfurt Schweinfurt Germany Department of Mathematics and Natural Sciences Hochschule Darmstadt Darmstadt Germany
Smoothing splines are twice differentiable by construction, so they cannot capture potential discontinuities in the underlying signal. In this work, we consider a special case of the weak rod model of Blake and Zisser... 详细信息
来源: 评论
learning to segment with image-level annotations
收藏 引用
Pattern Recognition 2016年 59卷 234-244页
作者: Wei, Yunchao Liang, Xiaodan Chen, Yunpeng Jie, Zequn Xiao, Yanhui Zhao, Yao Yan, Shuicheng Institute of information Science Beijing Jiaotong University Beijing 100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing 100044 China School of Advanced Computing Sun Yat-Sen University Guangzhou 510006 China Vision and Machine Learning Lab National University of Singapore 117583 Singapore People׳s Public Security University of China Beijing 100038 China
Recently, deep convolutional neural networks (DCNNs) have significantly promoted the development of semantic image segmentation. However, previous works on learning the segmentation network often rely on a large numbe... 详细信息
来源: 评论
learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects
Learning a Shape-Conditioned Agent for Purely Tactile In-Han...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Johannes Pitz Lennart Röstel Leon Sievers Darius Burschka Berthold Bäuml Learning AI for Dextrous Robots Lab (***) Technical University of Munich Germany DLR Institute of Robotics & Mechatronics (German Aerospace Center) Machine Vision and Perception Group Technical University of Munich
Reorienting diverse objects with a multi-fingered hand is a challenging task. Current methods in robotic in-hand manipulation are either object-specific or require permanent supervision of the object state from visual... 详细信息
来源: 评论
Caging Complex Objects with Geodesic Balls
Caging Complex Objects with Geodesic Balls
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Dmitry Zarubin Florian T. Pokorny Marc Toussaint Danica Kragic Machine Learning and Robotics Lab Universitat Stuttgart Stuttgart Germany Centre for Autonomous Systems Computer Vision and Active Perception Lab School of Computer Science and Communication KTH Royal Institute of Technology Stockholm Sweden
This paper proposes a novel approach for the synthesis of grasps of objects whose geometry can be observed only in the presence of noise. We focus in particular on the problem of generating caging grasps with a realis... 详细信息
来源: 评论
Generalized label enhancement with sample correlations
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Qinghai Zhu, Jihua Tang, Haoyu Liu, Xinyuan Li, Zhongyu Lu, Huimin Lab of Vision Computing and Machine Learning School of Software Engineering Xi'an Jiaotong University Xi'an710049 China Environment Recognition & Intelligent Computation Laboratory Kyushu Institute of Technology Japan
Recently, label distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from labelel instances. Different from single-label and multi-label annotations, label distributions... 详细信息
来源: 评论
Tensor-based Intrinsic Subspace Representation learning for Multi-view Clustering
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Qinghai Zhang, Yu Zhu, Jihua Li, Zhongyu Tang, Haoyu Ma, Shuangxun Lab of Vision Computing and Machine Learning School of Software Engineering Xi'an Jiaotong University Xi'An710049 China School of Software Engineering Xi'an Jiaotong University Xi'An710049 China
As a hot research topic, many multi-view clustering approaches are proposed over the past few years. Nevertheless, most existing algorithms merely take the consensus information among different views into consideratio... 详细信息
来源: 评论
RangeBird: Multi View Panoptic Segmentation of 3D Point Clouds with Neighborhood Attention
RangeBird: Multi View Panoptic Segmentation of 3D Point Clou...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Fabian Duerr Hendrik Weigel rgen Beyerer Audi AG Ingolstadt Germany Vision and Fusion Lab Karlsruhe Institute of Technology Germany Fraunhofer Institute of Optronics System Technologies and Image Exploitation Fraunhofer Center for Machine Learning Karlsruhe Germany
Panoptic segmentation of point clouds is one of the key challenges of 3D scene understanding, requiring the simultaneous prediction of semantics and object instances. Tasks like autonomous driving strongly depend on t...
来源: 评论
FUSIONvision: A COMPREHENSIVE APPROACH OF 3D OBJECT RECONSTRUCTION AND SEGMENTATION FROM RGB-D CAMERAS USING YOLO AND FAST SEGMENT ANYTHING
arXiv
收藏 引用
arXiv 2024年
作者: El Ghazouali, Safouane Mhirit, Youssef Oukhrid, Ali Michelucci, Umberto Nouira, Hichem TOELT LLC - Computer Vision Machine learning Lab Winterthur Switzerland Paris France Sonceboz Switzerland LNE - Laboratoire National de & Métrologie et d'Essais Paris France
In the realm of computer vision, the integration of advanced techniques into the preprocessing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental c... 详细信息
来源: 评论
Video Test-Time Adaptation for Action Recognition
Video Test-Time Adaptation for Action Recognition
收藏 引用
Conference on Computer vision and Pattern Recognition (CVPR)
作者: Wei Lin Muhammad Jehanzeb Mirza Mateusz Kozinski Horst Possegger Hilde Kuehne Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Christian Doppler Laboratory for Embedded Machine Learning Goethe University Frankfurt Germany MIT-IBM Watson AI Lab
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of vi...
来源: 评论
Sit Back and Relax: learning to Drive Incrementally in All Weather Conditions
Sit Back and Relax: Learning to Drive Incrementally in All W...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Stefan Leitner M. Jehanzeb Mirza Wei Lin Jakub Micorek Marc Masana Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Embedded Machine Learning Christian Doppler Laboratory for Semantic 3D Computer Vision Silicon Austria Labs TU Graz - SAL Dependable Embedded Systems Lab
In autonomous driving scenarios, current object detection models show strong performance when tested in clear weather. However, their performance deteriorates significantly when tested in degrading weather conditions....
来源: 评论