咨询与建议

限定检索结果

文献类型

  • 564 篇 会议
  • 235 篇 期刊文献

馆藏范围

  • 799 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 390 篇 工学
    • 255 篇 计算机科学与技术...
    • 225 篇 软件工程
    • 130 篇 控制科学与工程
    • 93 篇 光学工程
    • 75 篇 信息与通信工程
    • 70 篇 生物工程
    • 54 篇 机械工程
    • 47 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 35 篇 电气工程
    • 30 篇 交通运输工程
    • 29 篇 仪器科学与技术
    • 17 篇 土木工程
    • 16 篇 安全科学与工程
    • 13 篇 力学(可授工学、理...
    • 13 篇 建筑学
    • 13 篇 化学工程与技术
    • 12 篇 动力工程及工程热...
  • 209 篇 理学
    • 99 篇 物理学
    • 73 篇 数学
    • 72 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 15 篇 化学
    • 11 篇 系统科学
  • 71 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 33 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 28 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
  • 10 篇 法学
  • 9 篇 农学
  • 4 篇 经济学
  • 4 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 136 篇 computer vision
  • 119 篇 robot vision sys...
  • 94 篇 cameras
  • 74 篇 laboratories
  • 62 篇 intelligent robo...
  • 58 篇 robot sensing sy...
  • 49 篇 layout
  • 48 篇 robustness
  • 38 篇 humans
  • 30 篇 mobile robots
  • 30 篇 feature extracti...
  • 29 篇 visualization
  • 29 篇 robot kinematics
  • 28 篇 object detection
  • 27 篇 robots
  • 27 篇 robotics and aut...
  • 25 篇 navigation
  • 25 篇 shape
  • 24 篇 image segmentati...
  • 24 篇 machine vision

机构

  • 28 篇 computer vision ...
  • 24 篇 university of ch...
  • 22 篇 shenzhen institu...
  • 20 篇 artificial intel...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 national enginee...
  • 16 篇 shenzhen key lab...
  • 15 篇 computer vision ...
  • 15 篇 embedded vision ...
  • 13 篇 vision for robot...
  • 13 篇 guangdong key la...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 10 篇 computer vision ...
  • 9 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...
  • 7 篇 computer vision ...
  • 7 篇 centre for machi...

作者

  • 56 篇 m.m. trivedi
  • 33 篇 shen linlin
  • 31 篇 kryjak tomasz
  • 24 篇 n.p. papanikolop...
  • 20 篇 mohan m. trivedi
  • 19 篇 in so kweon
  • 17 篇 trivedi mohan m.
  • 17 篇 douglas g. macha...
  • 16 篇 zhang hong
  • 13 篇 c.e. smith
  • 13 篇 vincze markus
  • 12 篇 xie weicheng
  • 11 篇 linlin shen
  • 10 篇 j.c. mccall
  • 10 篇 hong zhang
  • 9 篇 kweon in so
  • 8 篇 tang chao
  • 8 篇 m. trivedi
  • 8 篇 lyons damian m.
  • 8 篇 song siyang

语言

  • 711 篇 英文
  • 86 篇 其他
  • 2 篇 中文
检索条件"机构=Vision for Robotics Laboratory"
799 条 记 录,以下是1-10 订阅
排序:
Real-Time Multi-object Tracking Using YOLOv8 and SORT on a SoC FPGA  21st
Real-Time Multi-object Tracking Using YOLOv8 and SORT on a...
收藏 引用
21st International Symposium on Applied Reconfigurable Computing, ARC 2025
作者: Danilowicz, Michal Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
Multi-object tracking (MOT) is one of the most important problems in computer vision and a key component of any vision-based perception system used in advanced autonomous mobile robotics. Therefore, its implementation... 详细信息
来源: 评论
Analytic Inverse Kinematics Model and Trajectory Planning for an 18 DoF Quadruped Robot  27
Analytic Inverse Kinematics Model and Trajectory Planning fo...
收藏 引用
27th International Conference on System Theory, Control and Computing, ICSTCC 2023
作者: Muntean, Bogdan Zaha, Mihai Grigorescu, Sorin The Robotics Vision and Control Laboratory RovisLab Transilvania University of Brasov Romania
Kinematics modelling of robotic systems is a fundamental requirement used by the underling control system. In this paper, we introduce a complete and analytic direct and inverse kinematic model for an 18 DoF quadruped... 详细信息
来源: 评论
Energy Efficient Hardware Acceleration of Neural Networks with Power-of-Two Quantisation
Energy Efficient Hardware Acceleration of Neural Networks wi...
收藏 引用
International Conference on Computer vision and Graphics, ICCVG 2022
作者: Przewlocka-Rus, Dominika Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
Deep neural networks virtually dominate the domain of most modern vision systems, providing high performance at a cost of increased computational complexity. Since for those systems it is often required to operate bot... 详细信息
来源: 评论
Traffic Sign Classification Using Deep and Quantum Neural Networks
Traffic Sign Classification Using Deep and Quantum Neural Ne...
收藏 引用
International Conference on Computer vision and Graphics, ICCVG 2022
作者: Kuros, Sylwia Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
Quantum Neural Networks (QNNs) are an emerging technology that can be used in many applications including computer vision. In this paper, we presented a traffic sign classification system implemented using a hybrid qu... 详细信息
来源: 评论
PointPillars Backbone Type Selection for Fast and Accurate LiDAR Object Detection
PointPillars Backbone Type Selection for Fast and Accurate L...
收藏 引用
International Conference on Computer vision and Graphics, ICCVG 2022
作者: Lis, Konrad Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Al. Mickiewicza 30 Krakow30-059 Poland
3D object detection from LiDAR sensor data is an important topic in the context of autonomous cars and drones. In this paper, we present the results of experiments on the impact of backbone selection of a deep convolu... 详细信息
来源: 评论
Joint Design of Receiving Filters and Complementary set of Sequences for ISAC With Sidelobe Level Suppression
IEEE Journal of Selected Areas in Sensors
收藏 引用
IEEE Journal of Selected Areas in Sensors 2024年 1卷 211-223页
作者: Zhang, Kecheng Wu, Jun Dong, Fuwang Lu, Shihang Li, Xiang Yuan, Weijie Southern University of Science and Technology Shenzhen518055 China School of Interdisciplinary Studies Lingnan University Tuen Mun Hong Kong Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen518055 China
The integrated sensing and communication (ISAC) waveform with a low sidelobe level on all delay indices is important for probing targets in the ISAC scenario. In this article, we consider the problem of jointly design... 详细信息
来源: 评论
Commonsense Scene Graph-based Target Localization for Object Search
arXiv
收藏 引用
arXiv 2024年
作者: Ge, Wenqi Tang, Chao Zhang, Hong Shenzhen Key Laboratory of Robotics and Computer Vision SUSTech Shenzhen China
Object search is a fundamental skill for household robots, yet the core problem lies in the robot's ability to locate the target object accurately. The dynamic nature of household environments, characterized by th... 详细信息
来源: 评论
Commonsense Scene Graph-based Target Localization for Object Search
Commonsense Scene Graph-based Target Localization for Object...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Wenqi Ge Chao Tang Hong Zhang Shenzhen Key Laboratory of Robotics and Computer Vision SUSTech Shenzhen China
Object search is a fundamental skill for household robots, yet the core problem lies in the robot’s ability to locate the target object accurately. The dynamic nature of household environments, characterized by the a... 详细信息
来源: 评论
Real-Time Multi-Object Tracking using YOLOv8 and SORT on a SoC FPGA
arXiv
收藏 引用
arXiv 2025年
作者: Danilowicz, Michal Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Krakow Poland
Multi-object tracking (MOT) is one of the most important problems in computer vision and a key component of any vision-based perception system used in advanced autonomous mobile robotics. Therefore, its implementation... 详细信息
来源: 评论
Segment-Based Trajectory Prediction and Risk Assessment for RSU-assisted CAVs at Signalized Intersections
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-19页
作者: Cao, Yue Shangguan, Wei Visser, Arnoud Chen, Junjie Chai, Linguo Cai, Baigen School of Automation and Intelligence Beijing Jiaotong University Beijing China School of Automation and Intelligence and State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing China Intelligent Robotics and Computer Vision Lab of the Informatics Institute Faculty of Science University of Amsterdam The Netherlands
Detecting surrounding situations and reacting accordingly to avoid collisions remains a challenging task for autonomous driving. This task requires predicting the trajectories of surrounding agents and assessing the p... 详细信息
来源: 评论