咨询与建议

限定检索结果

文献类型

  • 323 篇 会议
  • 218 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 542 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 375 篇 工学
    • 280 篇 计算机科学与技术...
    • 259 篇 软件工程
    • 77 篇 生物工程
    • 76 篇 信息与通信工程
    • 70 篇 光学工程
    • 44 篇 生物医学工程(可授...
    • 43 篇 控制科学与工程
    • 27 篇 机械工程
    • 27 篇 电气工程
    • 21 篇 电子科学与技术(可...
    • 17 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 仪器科学与技术
    • 13 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
  • 194 篇 理学
    • 87 篇 生物学
    • 82 篇 数学
    • 75 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 76 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 30 篇 基础医学(可授医学...
    • 30 篇 临床医学
    • 23 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 7 篇 教育学
    • 6 篇 教育学
  • 5 篇 农学
  • 4 篇 经济学
  • 2 篇 历史学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 23 篇 cameras
  • 18 篇 three-dimensiona...
  • 17 篇 visualization
  • 17 篇 computer vision
  • 16 篇 object detection
  • 16 篇 training
  • 15 篇 image segmentati...
  • 13 篇 computational mo...
  • 12 篇 deep learning
  • 12 篇 feature extracti...
  • 12 篇 virtual reality
  • 11 篇 solid modeling
  • 10 篇 shape
  • 9 篇 task analysis
  • 9 篇 robustness
  • 8 篇 image enhancemen...
  • 8 篇 deep neural netw...
  • 8 篇 neural networks
  • 8 篇 convolution
  • 8 篇 benchmarking

机构

  • 63 篇 shanghai key lab...
  • 48 篇 shanghai collabo...
  • 37 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 11 篇 shanghai key lab...
  • 11 篇 new york univers...
  • 10 篇 nyu multimedia a...
  • 10 篇 new york univers...
  • 9 篇 microsoft cloud ...
  • 8 篇 visual computing...
  • 8 篇 meituan
  • 7 篇 huya inc
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 nyu multimedia a...
  • 5 篇 state key labora...
  • 5 篇 zhejiang univers...
  • 5 篇 visual computing...
  • 5 篇 l2ti-institut ga...

作者

  • 59 篇 jiang yu-gang
  • 51 篇 wu zuxuan
  • 31 篇 fang yi
  • 25 篇 chen jingjing
  • 24 篇 yu-gang jiang
  • 21 篇 zuxuan wu
  • 16 篇 scopigno roberto
  • 14 篇 cheikh faouzi al...
  • 14 篇 daras petros
  • 12 篇 beghdadi azeddin...
  • 12 篇 yi fang
  • 11 篇 lanitis andreas
  • 11 篇 scopigno r.
  • 11 篇 wang junke
  • 11 篇 azeddine beghdad...
  • 10 篇 li xiang
  • 10 篇 cignoni paolo
  • 10 篇 kakadiaris ioann...
  • 10 篇 faouzi alaya che...
  • 9 篇 chen dongdong

语言

  • 523 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Visual Computing Lab"
542 条 记 录,以下是91-100 订阅
排序:
Attention Modules Improve Modern Image-Level Anomaly Detection: A DifferNet Case Study
arXiv
收藏 引用
arXiv 2024年
作者: Vieira e Silva, André Luiz B. Simões, Francisco Kowerko, Danny Schlosser, Tobias Battisti, Felipe Teichrieb, Veronica Voxar Labs Centro de Informática Universidade Federal de Pernambuco Brazil Chemnitz University of Technology Germany Visual Computing Lab DC Universidade Federal Rural de Pernambuco Brazil
Within (semi-)automated visual inspection, learning-based approaches for assessing visual defects, including deep neural networks, enable the processing of otherwise small defect patterns in pixel size on high-resolut... 详细信息
来源: 评论
Learning from rich semantics and coarse locations for long-tailed object detection  23
Learning from rich semantics and coarse locations for long-t...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Lingchen Meng Xiyang Dai Jianwei Yang Dongdong Chen Yinpeng Chen Mengchen Liu Yi-Ling Chen Zuxuan Wu Lu Yuan Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University and Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft
Long-tailed object detection (LTOD) aims to handle the extreme data imbalance in real-world datasets, where many tail classes have scarce instances. One popular strategy is to explore extra data with image-level label...
来源: 评论
Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Lanqing Wang, Chong Wang, Yufei Yu, Yi Huang, Siyu Yang, Wenhan Kot, Alex C. Wen, Bihan ROSE Lab Nanyang Technological University 50 Nanyang Ave 639798 Singapore Visual Computing Division School of Computing Clemson University ClemsonSC29631 United States Pengcheng Laboratory No. 2 Xingke 1st Street Shenzhen518066 China
Shadow removal aims at restoring the image content within shadow regions, pursuing a uniform distribution of illumination that is consistent between shadow and non-shadow regions. Comparing to other image restoration ... 详细信息
来源: 评论
DeepStack: Deeply Stacking visual Tokens is Surprisingly Simple and Effective for LMMs
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Lingchen Yang, Jianwei Tian, Rui Dai, Xiyang Wu, Zuxuan Gao, Jianfeng Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft Corporation United States
Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computa... 详细信息
来源: 评论
Unsigned Orthogonal Distance Fields: An Accurate Neural Implicit Representation for Diverse 3D Shapes
arXiv
收藏 引用
arXiv 2024年
作者: Lu, Yujie Wan, Long Ding, Nayu Wang, Yulong Shen, Shuhan Cai, Shen Gao, Lin Visual and Geometric Perception Lab Donghua University China Institute of Automation Chinese Academy of Sciences China Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Neural implicit representation of geometric shapes has witnessed considerable advancements in recent years. However, common distance field based implicit representations, specifically signed distance field (SDF) for w...
来源: 评论
Artwork Identification in a Museum Environment: A Quantitative Evaluation of Factors Affecting Identification Accuracy  8th
Artwork Identification in a Museum Environment: A Quantitati...
收藏 引用
8th European-Mediterranean Conference, EuroMed 2020
作者: Lanitis, A. Theodosiou, Z. Partaourides, H. Visual Media Computing Lab Department of Multimedia and Graphic Arts Cyprus University of Technology Limassol Limassol Cyprus CYENS Centre of Excellence Nicosia Cyprus
The ability to identify the artworks that a museum visitor is looking at, using first-person images seamlessly captured by wearable cameras can be used as a means for invoking applications that provide information abo... 详细信息
来源: 评论
Pix2Cap-COCO: Advancing visual Comprehension via Pixel-Level Captioning
arXiv
收藏 引用
arXiv 2025年
作者: You, Zuyao Wang, Junke Kong, Lingyu He, Bo Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China University of Maryland College Park United States
(Image Present) We present Pix2Cap-COCO, the first panoptic pixel-level caption dataset designed to advance fine-grained visual understanding. To achieve this, we carefully design an automated annotation pipeline that... 详细信息
来源: 评论
Multi-prompt alignment for multi-source unsupervised domain adaptation  23
Multi-prompt alignment for multi-source unsupervised domain ...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Haoran Chen Xintong Han Zuxuan Wu Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University and Shanghai Collaborative Innovation Center of Intelligent Visual Computing Huya Inc
Most existing methods for unsupervised domain adaptation (UDA) rely on a shared network to extract domain-invariant features. However, when facing multiple source domains, optimizing such a network involves updating t...
来源: 评论
Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
arXiv
收藏 引用
arXiv 2024年
作者: Li, Yian Tian, Wentao Jiao, Yang Chen, Jingjing Zhao, Na Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Singapore University of Technology and Design Singapore
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whet... 详细信息
来源: 评论
ADAPTIVE RETENTION & CORRECTION: TEST-TIME TRAINING FOR CONTINUAL LEARNING
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Haoran Goldblum, Micah Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China New York University United States
Continual learning, also known as lifelong learning or incremental learning, refers to the process by which a model learns from a stream of incoming data over time. A common problem in continual learning is the classi... 详细信息
来源: 评论