咨询与建议

限定检索结果

文献类型

  • 323 篇 会议
  • 218 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 542 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 375 篇 工学
    • 280 篇 计算机科学与技术...
    • 259 篇 软件工程
    • 77 篇 生物工程
    • 76 篇 信息与通信工程
    • 70 篇 光学工程
    • 44 篇 生物医学工程(可授...
    • 43 篇 控制科学与工程
    • 27 篇 机械工程
    • 27 篇 电气工程
    • 21 篇 电子科学与技术(可...
    • 17 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 仪器科学与技术
    • 13 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
  • 194 篇 理学
    • 87 篇 生物学
    • 82 篇 数学
    • 75 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 76 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 30 篇 基础医学(可授医学...
    • 30 篇 临床医学
    • 23 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 7 篇 教育学
    • 6 篇 教育学
  • 5 篇 农学
  • 4 篇 经济学
  • 2 篇 历史学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 23 篇 cameras
  • 18 篇 three-dimensiona...
  • 17 篇 visualization
  • 17 篇 computer vision
  • 16 篇 object detection
  • 16 篇 training
  • 15 篇 image segmentati...
  • 13 篇 computational mo...
  • 12 篇 deep learning
  • 12 篇 feature extracti...
  • 12 篇 virtual reality
  • 11 篇 solid modeling
  • 10 篇 shape
  • 9 篇 task analysis
  • 9 篇 robustness
  • 8 篇 image enhancemen...
  • 8 篇 deep neural netw...
  • 8 篇 neural networks
  • 8 篇 convolution
  • 8 篇 benchmarking

机构

  • 63 篇 shanghai key lab...
  • 48 篇 shanghai collabo...
  • 37 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 11 篇 shanghai key lab...
  • 11 篇 new york univers...
  • 10 篇 nyu multimedia a...
  • 10 篇 new york univers...
  • 9 篇 microsoft cloud ...
  • 8 篇 visual computing...
  • 8 篇 meituan
  • 7 篇 huya inc
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 nyu multimedia a...
  • 5 篇 state key labora...
  • 5 篇 zhejiang univers...
  • 5 篇 visual computing...
  • 5 篇 l2ti-institut ga...

作者

  • 59 篇 jiang yu-gang
  • 51 篇 wu zuxuan
  • 31 篇 fang yi
  • 25 篇 chen jingjing
  • 24 篇 yu-gang jiang
  • 21 篇 zuxuan wu
  • 16 篇 scopigno roberto
  • 14 篇 cheikh faouzi al...
  • 14 篇 daras petros
  • 12 篇 beghdadi azeddin...
  • 12 篇 yi fang
  • 11 篇 lanitis andreas
  • 11 篇 scopigno r.
  • 11 篇 wang junke
  • 11 篇 azeddine beghdad...
  • 10 篇 li xiang
  • 10 篇 cignoni paolo
  • 10 篇 kakadiaris ioann...
  • 10 篇 faouzi alaya che...
  • 9 篇 chen dongdong

语言

  • 523 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Visual Computing Lab"
542 条 记 录,以下是111-120 订阅
排序:
Instance-aware Multi-Camera 3D Object Detection with Structural Priors Mining and Self-Boosting Learning
arXiv
收藏 引用
arXiv 2023年
作者: Jiao, Yang Jie, Zequn Chen, Shaoxiang Cheng, Lechao Chen, Jingjing Ma, Lin Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Meituan China Zhejiang Lab. China
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field. Under such a paradigm, accurate BEV representation construction relies on reliable depth estimation f... 详细信息
来源: 评论
Achieving Efficient and Realistic Full-Radar Simulations and Automatic Data Annotation by Exploiting Ray Meta Data from a Radar Ray Tracing Simulator
Achieving Efficient and Realistic Full-Radar Simulations and...
收藏 引用
IEEE National Conference on Radar
作者: Christian Schüβler Marcel Hoffmann Vanessa Wirth Björn Eskofier Tim Weyrich Marc Stamminger Martin Vossiek Institute of Microwaves and Photonics Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Chair of Visual Computing Machine Learning and Data Analytics Lab Chair of Digital Reality
In this work, a novel radar simulation concept for efficiently simulating realistic radar data for range, Doppler, and arbitrary antenna positions is introduced. With the concept, the simulated radar signal can also b...
来源: 评论
GenRec: Unifying Video Generation and Recognition with Diffusion Models
arXiv
收藏 引用
arXiv 2024年
作者: Weng, Zejia Yang, Xitong Xing, Zhen Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Department of Computer Science University of Maryland United States
Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative pr... 详细信息
来源: 评论
MotionEditor: Editing Video Motion via Content-Aware Diffusion
MotionEditor: Editing Video Motion via Content-Aware Diffusi...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Shuyuan Tu Qi Dai Zhi-Qi Cheng Han Hu Xintong Han Zuxuan Wu Yu-Gang Jiang Shanahai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Research Asia Camegie Mellon University Huya Inc.
Existing diffusion-based video editing models have made gorgeous advances for editing attributes of a source video over time but struggle to manipulate the motion information while preserving the original protagonist&... 详细信息
来源: 评论
CUDA and Applications to Task-based Programming
CUDA and Applications to Task-based Programming
收藏 引用
43rd Annual Conference on European Association for Computer Graphics, EUROGRAPHICS 2022
作者: Kerbl, Bernhard Kenzel, Michael Winter, Martin Steinberger, Markus TU Wien Institute of Visual Computing and Human-Centered Technology Austria Saarland University Computer Graphics Lab Germany Intelligent Cloud Rendering Laboratory Huawei Technologies Austria Graz University of Technology Institute of Computer Graphics and Vision Austria
Since its inception, the CUDA programming model has been continuously evolving. Because the CUDA toolkit aims to consistently expose cutting-edge capabilities for general-purpose compute jobs to its users, the added f... 详细信息
来源: 评论
Neural Image Unfolding: Flattening Sparse Anatomical Structures using Neural Fields
arXiv
收藏 引用
arXiv 2024年
作者: Rist, Leonhard Stephan, Pluvio Maul, Noah Vorberg, Linda Ditt, Hendrik Sühling, Michael Maier, Andreas Egger, Bernhard Taubmann, Oliver Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Computed Tomography Siemens Healthineers AG Forchheim Germany Chair of Visual Computing Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
Tomographic imaging reveals internal structures of 3D objects and is crucial for medical diagnoses. visualizing the morphology and appearance of non-planar sparse anatomical structures that extend over multiple 2D sli... 详细信息
来源: 评论
Riemannian Geometry for Scientific visualization  22
Riemannian Geometry for Scientific Visualization
收藏 引用
SIGGRAPH Asia 2022 Courses
作者: Markus Hadwiger Thomas Theußl Peter Rautek Visual Computing Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia Visualization Core Lab King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
This tutorial introduces the most important basics of Riemannian geometry and related concepts with a specific focus on applications in scientific visualization. The main concept in Riemannian geometry is the presence...
来源: 评论
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vision-Language Understanding
arXiv
收藏 引用
arXiv 2023年
作者: Peng, Wujian Xie, Sicheng You, Zuyao Lan, Shiyi Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China NVIDIA United States
Vision language models (VLM) have demonstrated remarkable performance across various downstream tasks. However, understanding fine-grained visual-linguistic concepts, such as attributes and inter-object relationships,... 详细信息
来源: 评论
Learning from Rich Semantics and Coarse Locations for Long-tailed Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Meng, Lingchen Dai, Xiyang Yang, Jianwei Chen, Dongdong Chen, Yinpeng Liu, Mengchen Chen, Yi-Ling Wu, Zuxuan Yuan, Lu Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft United States
Long-tailed object detection (LTOD) aims to handle the extreme data imbalance in real-world datasets, where many tail classes have scarce instances. One popular strategy is to explore extra data with image-level label... 详细信息
来源: 评论
AdaDiff: Adaptive Step Selection for Fast Diffusion
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Hui Wu, Zuxuan Xing, Zhen Shao, Jie Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China ByteDance Inc China
Diffusion models, as a type of generative models, have achieved impressive results in generating images and videos conditioned on textual conditions. However, the generation process of diffusion models involves denois... 详细信息
来源: 评论