咨询与建议

限定检索结果

文献类型

  • 319 篇 会议
  • 218 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 538 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 374 篇 工学
    • 280 篇 计算机科学与技术...
    • 259 篇 软件工程
    • 77 篇 生物工程
    • 76 篇 信息与通信工程
    • 70 篇 光学工程
    • 44 篇 生物医学工程(可授...
    • 43 篇 控制科学与工程
    • 27 篇 机械工程
    • 27 篇 电气工程
    • 21 篇 电子科学与技术(可...
    • 17 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 仪器科学与技术
    • 13 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
  • 194 篇 理学
    • 87 篇 生物学
    • 82 篇 数学
    • 75 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 75 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 30 篇 基础医学(可授医学...
    • 30 篇 临床医学
    • 23 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 7 篇 教育学
    • 6 篇 教育学
  • 5 篇 农学
  • 4 篇 经济学
  • 2 篇 历史学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 23 篇 cameras
  • 18 篇 three-dimensiona...
  • 17 篇 visualization
  • 17 篇 computer vision
  • 16 篇 object detection
  • 16 篇 training
  • 15 篇 image segmentati...
  • 13 篇 computational mo...
  • 12 篇 deep learning
  • 12 篇 feature extracti...
  • 12 篇 virtual reality
  • 11 篇 solid modeling
  • 10 篇 shape
  • 9 篇 task analysis
  • 9 篇 robustness
  • 8 篇 image enhancemen...
  • 8 篇 deep neural netw...
  • 8 篇 neural networks
  • 8 篇 convolution
  • 8 篇 benchmarking

机构

  • 63 篇 shanghai key lab...
  • 48 篇 shanghai collabo...
  • 37 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 11 篇 shanghai key lab...
  • 11 篇 new york univers...
  • 10 篇 nyu multimedia a...
  • 10 篇 new york univers...
  • 9 篇 microsoft cloud ...
  • 8 篇 visual computing...
  • 7 篇 meituan
  • 7 篇 huya inc
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 nyu multimedia a...
  • 5 篇 state key labora...
  • 5 篇 zhejiang univers...
  • 5 篇 visual computing...
  • 5 篇 l2ti-institut ga...

作者

  • 59 篇 jiang yu-gang
  • 51 篇 wu zuxuan
  • 31 篇 fang yi
  • 25 篇 chen jingjing
  • 20 篇 yu-gang jiang
  • 18 篇 zuxuan wu
  • 16 篇 scopigno roberto
  • 14 篇 cheikh faouzi al...
  • 14 篇 daras petros
  • 12 篇 beghdadi azeddin...
  • 12 篇 yi fang
  • 11 篇 lanitis andreas
  • 11 篇 scopigno r.
  • 11 篇 wang junke
  • 11 篇 azeddine beghdad...
  • 10 篇 li xiang
  • 10 篇 cignoni paolo
  • 10 篇 kakadiaris ioann...
  • 10 篇 faouzi alaya che...
  • 9 篇 chen dongdong

语言

  • 519 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Visual Computing Lab"
538 条 记 录,以下是51-60 订阅
排序:
Retrieval Augmented Recipe Generation
Retrieval Augmented Recipe Generation
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Guoshan Liu Hailong Yin Bin Zhu Jingjing Chen Chong-Wah Ngo Yu-Gang Jiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai Collaborative Innovation Center on Intelligent Visual Computing Singapore Management University
The growing interest in generating recipes from food images has drawn substantial research attention in recent years. Existing works for recipe generation primarily utilize a two-stage training method—first predictin... 详细信息
来源: 评论
Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Haoran Wang, Ping Zhou, Zihan Zhang, Xu Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China APUS AI Lab China
Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tun... 详细信息
来源: 评论
BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection
BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detecti...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhenxin Li Shiyi Lan Jose M. Alvarez Zuxuan Wu Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing NVIDIA
Recently, the rise of query-based Transformer decoders is reshaping camera-based 3D object detection. These query-based decoders are surpassing the traditional dense BEV (Bird's Eye View)-based methods. However, w... 详细信息
来源: 评论
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vision-Language Understanding
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vis...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wujian Peng Sicheng Xie Zuyao You Shiyi Lan Zuxuan Wu Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing NVIDIA
Vision language models (VLM) have demonstrated re-markable performance across various downstream tasks. However, understanding fine-grained visual-linguistic con-cepts, such as attributes and inter-object relationship... 详细信息
来源: 评论
Compressed Depth Map Super-Resolution and Restoration: AIM 2024 Challenge Results
arXiv
收藏 引用
arXiv 2024年
作者: Conde, Marcos V. Vasluianu, Florin-Alexandru Xiong, Jinhui Ye, Wei Ranjan, Rakesh Timofte, Radu Zheng, Huan Han, Wencheng Yan, Tianyi Shen, Jianbing Sun, Pihai Yao, Yuanqi Jiang, Kui Zhao, Wenbo Liu, Xianming Burnaev, Evgeny Jiang, Junjun Han, Woojae Lee, Kyeonghyun Hong, Seongmin Chun, Se Young Kim, Jinseong Kim, Dohyeong Kim, Jeahwan Wang, Yubo Zhang, Chi Luo, Huizhen Wu, Yansai Huang, Mengcheng Liu, Chengji Yve, Chongli Sun, Jianhang Guo, Cheng Du, Yingcai Jianhao, Huang Shuai, Liu Chenghua, Li Computer Vision Lab CAIDAS IFI University of Würzburg Germany Visual Computing Group FTG Sony PlayStation Meta Reality Labs Challenge Organizers
The increasing demand for augmented reality (AR) and virtual reality (VR) applications highlights the need for efficient depth information processing. Depth maps, essential for rendering realistic scenes and supportin... 详细信息
来源: 评论
DuMo: Dual Encoder Modulation Network for Precise Concept Erasure
arXiv
收藏 引用
arXiv 2025年
作者: Han, Feng Chen, Kai Gong, Chao Wei, Zhipeng Chen, Jingjing Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China
The exceptional generative capability of text-to-image models has raised substantial safety concerns regarding the generation of Not-Safe-For-Work (NSFW) content and potential copyright infringement. To address these ... 详细信息
来源: 评论
Unsigned Orthogonal Distance Fields: An Accurate Neural Implicit Representation for Diverse 3D Shapes
Unsigned Orthogonal Distance Fields: An Accurate Neural Impl...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yujie Lu Long Want Nayu Ding Yulong Wang Shuhan Shen Shen Cai Lin Gao Visual and Geometric Perception Lab Donghua University Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Institute of Computing Technology Chinese Academy of Sciences
Neural implicit representation of geometric shapes has witnessed considerable advancements in recent years. However, common distance field based implicit represen-tations, specifically signed distance field (SDF) for ... 详细信息
来源: 评论
AIM 2024 Challenge on Efficient Video Super-Resolution for AV1 Compressed Content
arXiv
收藏 引用
arXiv 2024年
作者: Katsavounidis, Ioannis Timofte, Radu Luo, Qing Song, Jie Jiang, Linyan Lei, Haibo Li, Yaqing Luo, Ziqi Dong, Rongkang Yang, Cuixin He, Zongqi Xiao, Jun Xiao, Zhe Zuo, Yushen Lyu, Zihang Lam, Kin-Man Jiang, Yuxuan Nawala, Jakub Feng, Chen Zhang, Fan Zhu, Xiaoqing Sole, Joel Bull, David Lee, Jae-Hyeon Son, Dong-Hyeop Choi, Ui-Jin Zheng, Mingjun Yang, Zhongbao Sun, Long Pan, Jinshan Dong, Jiangxin Tang, Jinhui Conde, Marcos V. Lei, Zhijun Li, Wen Bampis, Christos Computer Vision Lab CAIDAS & IFI University of Würzburg Germany Visual Computing Group FTG Sony PlayStation Meta Video Infrastructure Group Netflix Inc
Video super-resolution (VSR) is a critical task for enhancing low-bitrate and low-resolution videos, particularly in streaming applications. While numerous solutions have been developed, they often suffer from high co... 详细信息
来源: 评论
Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study
Attention Modules Improve Image-Level Anomaly Detection for ...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: André Luiz Vieira e Silva Francisco Simões Danny Kowerko Tobias Schlosser Felipe Battisti Veronica Teichrieb Voxar Labs Centro de Informática Universidade Federal de Pernambuco Brazil Visual Computing Lab DC Universidade Federal Rural de Pernambuco Brazil Junior Professorship of Media Computing Chemnitz University of Technology Germany
Within (semi-)automated visual industrial inspection, learning-based approaches for assessing visual defects, including deep neural networks, enable the processing of otherwise small defect patterns in pixel size on h...
来源: 评论
UniToken: Harmonizing Multimodal Understanding and Generation through Unified visual Encoding
arXiv
收藏 引用
arXiv 2025年
作者: Jiao, Yang Qiu, Haibo Jie, Zequn Chen, Shaoxiang Chen, Jingjing Ma, Lin Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Meituan China
We introduce UniToken, an auto-regressive generation model that encodes visual inputs through a combination of discrete and continuous representations, enabling seamless integration of unified visual understanding and... 详细信息
来源: 评论