咨询与建议

限定检索结果

文献类型

  • 323 篇 会议
  • 218 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 542 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 375 篇 工学
    • 280 篇 计算机科学与技术...
    • 259 篇 软件工程
    • 77 篇 生物工程
    • 76 篇 信息与通信工程
    • 70 篇 光学工程
    • 44 篇 生物医学工程(可授...
    • 43 篇 控制科学与工程
    • 27 篇 机械工程
    • 27 篇 电气工程
    • 21 篇 电子科学与技术(可...
    • 17 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 仪器科学与技术
    • 13 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 安全科学与工程
  • 194 篇 理学
    • 87 篇 生物学
    • 82 篇 数学
    • 75 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 76 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 30 篇 基础医学(可授医学...
    • 30 篇 临床医学
    • 23 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 7 篇 教育学
    • 6 篇 教育学
  • 5 篇 农学
  • 4 篇 经济学
  • 2 篇 历史学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 23 篇 cameras
  • 18 篇 three-dimensiona...
  • 17 篇 visualization
  • 17 篇 computer vision
  • 16 篇 object detection
  • 16 篇 training
  • 15 篇 image segmentati...
  • 13 篇 computational mo...
  • 12 篇 deep learning
  • 12 篇 feature extracti...
  • 12 篇 virtual reality
  • 11 篇 solid modeling
  • 10 篇 shape
  • 9 篇 task analysis
  • 9 篇 robustness
  • 8 篇 image enhancemen...
  • 8 篇 deep neural netw...
  • 8 篇 neural networks
  • 8 篇 convolution
  • 8 篇 benchmarking

机构

  • 63 篇 shanghai key lab...
  • 48 篇 shanghai collabo...
  • 37 篇 shanghai collabo...
  • 20 篇 microsoft resear...
  • 11 篇 shanghai key lab...
  • 11 篇 new york univers...
  • 10 篇 nyu multimedia a...
  • 10 篇 new york univers...
  • 9 篇 microsoft cloud ...
  • 8 篇 visual computing...
  • 8 篇 meituan
  • 7 篇 huya inc
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 visual computing...
  • 6 篇 nyu multimedia a...
  • 5 篇 state key labora...
  • 5 篇 zhejiang univers...
  • 5 篇 visual computing...
  • 5 篇 l2ti-institut ga...

作者

  • 59 篇 jiang yu-gang
  • 51 篇 wu zuxuan
  • 31 篇 fang yi
  • 25 篇 chen jingjing
  • 24 篇 yu-gang jiang
  • 21 篇 zuxuan wu
  • 16 篇 scopigno roberto
  • 14 篇 cheikh faouzi al...
  • 14 篇 daras petros
  • 12 篇 beghdadi azeddin...
  • 12 篇 yi fang
  • 11 篇 lanitis andreas
  • 11 篇 scopigno r.
  • 11 篇 wang junke
  • 11 篇 azeddine beghdad...
  • 10 篇 li xiang
  • 10 篇 cignoni paolo
  • 10 篇 kakadiaris ioann...
  • 10 篇 faouzi alaya che...
  • 9 篇 chen dongdong

语言

  • 523 篇 英文
  • 18 篇 其他
  • 1 篇 中文
检索条件"机构=Visual Computing Lab"
542 条 记 录,以下是81-90 订阅
排序:
ADAPTIVE WAVELET TRANSFORMER NETWORK FOR 3D SHAPE REPRESENTATION LEARNING  10
ADAPTIVE WAVELET TRANSFORMER NETWORK FOR 3D SHAPE REPRESENTA...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Huang, Hao Fang, Yi NYU Multimedia and Visual Computing Lab United States Abu Dhabi United Arab Emirates NYU Tandon School of Engineering New York University United States New York University Abu Dhabi United Arab Emirates
We present a novel method for 3D shape representation learning using multi-scale wavelet decomposition. Previous works often decompose 3D shapes into complementary components in spatial domain at a single scale. In th... 详细信息
来源: 评论
Psscl: A Progressive Sample Selection Framework with Contrastive Loss Designed for Noisy labels
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Qian Zhu, Yi Cordeiro, Filipe R. Chen, Qiu School of Information Technology Jiangsu Open University Nanjing210036 China Department of Electrical Engineering and Electronics Graduate School of Engineering Kogakuin University Tokyo163-8677 Japan Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil
Large-scale image datasets frequently contain unavoidable noisy labels, resulting in overfitting in deep neural networks and declining performance. Most existing methods for learning from noisy labels operate as one-s... 详细信息
来源: 评论
Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency
arXiv
收藏 引用
arXiv 2024年
作者: Hahlbohm, Florian Friederichs, Fabian Weyrich, Tim Franke, Linus Kappel, Moritz Castillo, Susana Stamminger, Marc Eisemann, Martin Magnor, Marcus Computer Graphics Lab TU Braunschweig Germany Visual Computing Erlangen FAU Erlangen-Nürnberg Germany University College London United Kingdom University of New Mexico United States
3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration of scenes. In these applications, coherence across camera frames and multiple views is... 详细信息
来源: 评论
Retrieval Augmented Recipe Generation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Guoshan Yin, Hailong Zhu, Bin Chen, Jingjing Ngo, Chong-Wah Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Singapore Management University Singapore
The growing interest in generating recipes from food images has drawn substantial research attention in recent years. Existing works for recipe generation primarily utilize a two-stage training method—first predictin... 详细信息
来源: 评论
Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study
arXiv
收藏 引用
arXiv 2023年
作者: Vieira e Silva, André Luiz Simões, Francisco Kowerko, Danny Schlosser, Tobias Battisti, Felipe Teichrieb, Veronica Voxar Labs Centro de Informática Universidade Federal de Pernambuco Brazil Media Computing Chemnitz University of Technology Germany Visual Computing Lab DC Universidade Federal Rural de Pernambuco Brazil
Within (semi-)automated visual industrial inspection, learning-based approaches for assessing visual defects, including deep neural networks, enable the processing of otherwise small defect patterns in pixel size on h... 详细信息
来源: 评论
Psscl: A Progressive Sample Selection Framework with Contrastive Loss Designed for Noisy labels
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Qian Zhu, Yi Cordeiro, Filipe R. Chen, Qiu School of Information Technology Jiangsu Open University Nanjing210036 China Department of Electrical Engineering and Electronics Graduate School of Engineering Kogakuin University Tokyo163-8677 Japan Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil
Large-scale image datasets frequently contain unavoidable noisy labels, resulting in overfitting in deep neural networks and declining performance. Most existing methods for learning from noisy labels operate as one-s... 详细信息
来源: 评论
Vicinity Vision Transformer
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2023年 第10期45卷 12635-12649页
作者: Sun, Weixuan Qin, Zhen Deng, Hui Wang, Jianyuan Zhang, Yi Zhang, Kaihao Barnes, Nick Birchfield, Stan Kong, Lingpeng Zhong, Yiran Australian National University The School of Computing CanberraACT2601 Australia The SenseTime Research Shanghai200233 China Northwestern Polytechnical University The School of Electronics and Information Xi'an710072 China University of Oxford The Visual Geometry Group OxfordOX1 4BH United Kingdom The Nvidia RedmondWA98052 United States The University of Hong Kong Hong Kong The Shanghai Ai Lab Shanghai200231 China
Vision transformers have shown great success on numerous computer vision tasks. However, their central component, softmax attention, prohibits vision transformers from scaling up to high-resolution images, due to both... 详细信息
来源: 评论
Rapidvol: Rapid Reconstruction of 3D Ultrasound Volumes from Sensorless 2D Scans
Rapidvol: Rapid Reconstruction of 3D Ultrasound Volumes from...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Mark C. Eid Pak-Hei Yeung Madeleine K. Wyburd João F. Henriques Ana I.L. Namburete Visual Geometry Group University of Oxford U.K. Oxford Machine Learning in Neuroimaging Lab University of Oxford U.K. College of Computing and Data Science Nanyang Technological University Singapore
Two-dimensional (2D) freehand ultrasonography is a widely used medical imaging modality, particularly in obstetrics and gynaecology. However, it only captures 2D cross-sectional views of inherently 3D anatomies, losin... 详细信息
来源: 评论
Detection Hub: Unifying Object Detection Datasets via Query Adaptation on Language Embedding
Detection Hub: Unifying Object Detection Datasets via Query ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lingchen Meng Xiyang Dai Yinpeng Chen Pengchuan Zhang Dongdong Chen Mengchen Liu Jianfeng Wang Zuxuan Wu Lu Yuan Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft
Combining multiple datasets enables performance boost on many computer vision tasks. But similar trend has not been witnessed in object detection when combining multiple datasets due to two inconsistencies among detec...
来源: 评论
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth Seeds for 3D Object Detection
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yang Jiao Zequn Jie Shaoxiang Chen Jingjing Chen Lin Ma Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Meituan
Fusing LiDAR and camera information is essential for accurate and reliable 3D object detection in autonomous driving systems. This is challenging due to the difficulty of combining multi-granularity geometric and sema...
来源: 评论