作者:
SHEA, JGThe Author:holds bachelor and master of engineering degrees in mechanical engineering
a M.Eng. in engineering management and is currently fulfilling requirements for the M.S. and Ph.D. degrees in computer science at the University of Louisville. He is employed as program manager Phalanx Advanced Engineering Development at the Naval Ordnance Station Crane Div. NavSurfWarCen Louisville Ky. During his tenure with Phalanx Mr. Shea has contributed to system reliability improvement system performance upgrading and the development of the Phalanx HOL (RISC) Computer. Mr. Shea is a member of ASNE the Institute of Electrical and Electronics Engineers American Institute of Aeronautics and Astronautics Society for Computer Simulation International Test & Evaluation Association and the Military Operations Research Society.
Knowledge-based modeling and simulation bridges the gap between ''conventional'' artificial intelligence implementations (such as expert systems) and more traditional computer-aideddesign techniques. ...
Knowledge-based modeling and simulation bridges the gap between ''conventional'' artificial intelligence implementations (such as expert systems) and more traditional computer-aideddesign techniques. We are currently developing software, whose primary function is to capture a user-input design specification and produce a ''virtual'' rapid prototvpe in the form of executable rule-based code. This code can then be exercised either as an interactive part of a hardware-in-the-loop testbed simulator or as a component of an object-oriented ''behavioral'' simulation environment. While the phalanx Testbed is the immediate beneficiary of this work, the techniques described have a wide range of application in the modeling of conceptual design and performance characteristics. This paper describes the system architecture and software tools that we are applying to generate virtual rapid prototypes for use in the phalanx Testbed. Particular attention is paid to defining the intelligent knowledge-capture mechanisms and model generation methodologies that we are using to translate design knowledge and performance requirements into rule-based simulations. The object-orientedprogramming approach to the merging of ''new'' data with previouslv-captured and storeddata is discussed, and the issues of verifying and validating prototypes generated using such partiallv ''reengineered'' models are examined. An application currently in use as an investigative prototype for testbeddevelopment, a simple position controller servomechanism used to control the azimuth angle of a target-tracking sensor, is used to illustrate the process.
The right to die may be among the most legally complex and culturally sensitive areas of civil rights to emerge in our time. The thorny issues associated with a terminally ill individual's right to self‐determina...
详细信息
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continu...
详细信息
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continuous contact with their terminals. Navigation of these craft, therefore, does not present any unusual difficulty. The introduction of air cushion vehicles into military service, however, can present a very different picture, especially when external navigation aids are not available and the craft must navigate by dead reckoning. This paper considers the problems involved when navigating a high-speed air cushion vehicle by dead reckoning in conditions of poor visibility. A method is presented to assess the ACV's navigational capability under these circumstances. A figure of merit is used to determine the sensitivity of factors which affect navigation such as the range of visibility, point-to-point distance, speed, turning radius and accuracy of onboard equipment. The method provides simplistic but adequate answers and can be used effectively to compare the-capability and cost of alternative navigation concepts.
暂无评论